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Executive	Summary	

The large increase in ground-motion data sets shows that ergodic GMPEs significantly overestimate 
the aleatory variability. Multiple studies have shown that after removing the repeatable source, path, 
site effects, the aleatory variability is about 0.4 ln units. This value of the nonergodic aleatory variability 
is stable for different regions of the world. The issue is that to use this lower value of the aleatory 
variability in seismic hazard studies, the site/source specific source, path, and site terms need to be 
estimated, including the epistemic uncertainty in the estimated values. 

A methodology for developing a complete non-ergodic ground-motion model for California, including
estimates of the epistemic uncertainties is described. Three different concepts are combined into this
method: (1) modeling the epistemic uncertainty in the base scaling of the regional GMPE as a
continuous distribution used for Diablo Canyon and described in Geopentech (2015), (2) modeling the 
spatial variability of the GMPE within a region using the spatially varying coefficient model (VCM) of
Landwehr et al (2016), and (3) modeling the path-specific terms using concept of cell-specific 
attenuation for the large distance scaling as describe by Dawood and Rodriquez-Marek (2013). For
the last two, a method for modeling the epistemic uncertainty in the VCM and cell-specific attenuation
is described.

The PHSA code HAZ45 was modified to be able to use fully non-ergodic GMPEs. Example hazard 
calculations for three sites in California are used to compare the mean hazard and the epistemic 
uncertainty range of the hazard for ergodic and non-ergodic GMPEs. This comparison shows the large
increase in epistemic uncertainty for sites site with little to no data (but no change in the mean hazard).
For sites with some ground-motion data to constrain the non-ergodic GMPE, the mean hazard can 
increase or decrease depending on the location of the site. The width of the epistemic uncertainty
range depends on the amount of ground-motion available in the site region. To reduce the epistemic
uncertainties requires additional ground-motion data from dense arrays of stations or from numerical
simulations using 3-D crustal models.

The data collected over the past decade show that ground motions do not follow an ergodic model.
The non-ergodic approach should be used in both regions with large amounts of data and in regions
with sparse data. The key is that lack of data does not mean certainty; lack of data implies large
uncertainty. For regions with sparse data, the aleatory variability will still be the non-ergodic value of
about 0.4, but there will be large epistemic uncertainty in the site/source specific source, path, and site 
terms. For regions without data, the covariance structure of the source, path, and site terms from the
regions with sufficient data can be used. That is, an ergodic assumption can be made on the
covariance, but not on the median values.
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1 Introduction

Probabilistic seismic hazard analysis (PSHA) requires a ground-motion model to describe the

range of ground motions that can occur for a given earthquake scenario. Most often, the ground-

motion model is given by empirical ground-motion prediction equations (GMPE) which describe

the median and standard deviation of the ground-motion parameter for the given scenario. In

PHSA, at long return periods, the hazard is strongly dependent on the value of the standard

deviation as it controls the slope of the hazard curve (Bommer and Abrahamson, 2006). Because

of the limited number of ground-motion recordings from large magnitude earthquakes at short

distances, GMPEs have traditionally been developed using global data sets that combine the

ground-motion data from similar tectonic regions around the world. Typically, three broad

tectonic categories are used for GMPEs: active crustal regions, stable continental regions, and

subduction zones. Within each broad tectonic category, the ground motion is assumed to follow

the same scaling with magnitude, distance, and site condition (i.e. for a given scenario, the

median and aleatory variability of the GMPE are assumed to be applicable to any location

within the broad tectonic category). This is called the ergodic assumption (Anderson and

Brune, 1999).

In the past decade, ground-motion data sets have grown rapidly resulting in data sets

with recordings from multiple earthquakes at specific recording stations. Many researchers

have found that for a specific site and for earthquakes with located within a small region, the

aleatory variability of the ground motion is much smaller than the aleatory variability of global

models based on the ergodic assumption (e.g. Atkinson, 2006; Hiemer et al., 2011; Lin et al.,

2011; Morikawa et al., 2008; Yagoda-Biran et al., 2015). These studies have shown that for

a specific site and earthquake pair, the variance of the aleatory variability is only 30-40% of

the ergodic variance. This means that most of the variability treated as randomness in the

ergodic approach is actually due to systematic source, path, and site effects. For example,

using the NGA-W2 data set, Landwehr et al. (2016) found that the magnitude-independent

aleatory variability has a standard deviation in the range of 0.68 to 0.87 natural log units for

an ergodic model for California; whereas, the standard deviation is in the range of 0.46 to 0.54

natural log units for a non-ergodic model.

In addition to the empirical data, numerical simulations with 3-D crustal models have been
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used to estimate the path and site terms. In Southern California, Cybershake has been used to

compute the non-ergodic hazard (Graves et al., 2011). An analysis of the variance components

from the Cybershake simulations showed that the single-path variability was about 30% of

the variance measured over all sites and paths (Wang and Jordan, 2014), consistent with the

empirical results.

This difference in the ergodic and non-ergodic aleatory variability has a large effect on the

seismic hazard as shown by the following simplified example for a single earthquake scenario.

Consider a site in which the hazard is controlled by a single nearby fault with a single represen-

tative scenario: M7 earthquake at a distance of 10 km with a recurrence interval of 200 years.

The ground-motion distribution for an ergodic ground-motion model is shown together with the

distributions from three alternative non-ergodic models (Figure 1). The three non-ergodic dis-

tributions have different values of the non-ergodic median for this scenario (source+path+site

terms) and exhibit a lower aleatory variability than the ergodic model. These three estimates

of the non-ergodic term represent three possible logic tree branches. Assuming a recurrence

interval of 200 years for the scenario, Figure 1 shows the resulting hazard curves for the ergodic

model and the three non-ergodic branches. Each of the non-ergodic hazard curves are steeper

compared to the ergodic one due to the lower aleatory variability and they span a wide range

of hazard due to the uncertainty in the median ground motion for the scenario at the specific

location. This large uncertainty range is typical in the initial phase of moving from ergodic

to non-ergodic hazard analyses: with limited data to constrain the location-specific median

ground motion, there is an increase in the epistemic uncertainty of the hazard (Walling and

Abrahamson, 2012).

With the large increase in ground-motion data sets, we now know that the standard de-

viation of the systematic location-specific effects on the ground motion is large compared to

the remaining aleatory variability. We know that the ground motions at a specific site from a

specific earthquake will have a narrow distribution as shown by the non-ergodic models, but the

median will, in general, be different from the global model median. If there is no site-specific

data available to estimate the source- and site-specific median, then there will be a large epis-

temic uncertainty in the value of the median ground motion. As new data are collected and the

site/source specific terms become better constrained, the epistemic uncertainty in the median
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can be reduced . Walling and Abrahamson (2012) computed fully non-ergodic hazard showing

the uncertainty for example cases in which there was no site-specific information available and

for which there was some limited site-specific information available. This increased epistemic

uncertainty is not captured in the current ergodic models and it highlights a short-coming in

traditional hazard analyses based on ergodic ground-motion models.

The fully non-ergodic model considers the systematic source, path, and site effects. A par-

tial non-ergodic model that only removes the systematic site effects has been used in hazard

applications over the past five years (e.g. PRP, South Africa, SWUS, BCHydro, Hanford). If

only the systematic site terms are addressed, then about 30% of the variance of the ergodic

model is removed as compared to 60-70% for the fully non-ergodic case. The reduced aleatory

variability for this partially non-ergodic approach is called the single-station sigma. Because

site-specific site response calculations are commonly conducted, the partially non-ergodic ap-

proach is straightforward to implement (e.g. Rodriguez-Marek et al., 2014). For this type of

partially non-ergodic approach, the hazard is computed for a reference rock condition using the

ergodic median and the single-station sigma for the aleatory variability. The site-specific site

amplification and its epistemic uncertainty are then computed using traditional site response

studies methods. Combining the single-station sigma reference rock hazard with the site am-

plification (including the epistemic uncertainty in the site amplification) leads to a partially

non-ergodic hazard curve.

As ground-motion data sets have grown over the past decade, there has been a trend of

moving from ergodic to non-ergodic GMPEs. For example, the 2008 NGA-W1 GMPEs (Power

et al., 2008) were fully ergodic models with the same models being applied to all regions within

the same broad tectonic category. The 2014 NGA-W2 GMPEs (Bozorgnia et al., 2014) had

access to much larger data sets. In these expanded data sets, it became clear that there were

strong regional differences to the ground-motion scaling. For example, the large distance scaling

between Japan and California was different. The NGA-W2 models included regional differences

in up to four terms of the GMPEs: constant term, large distance scaling, the VS30 scaling,

and the basin depth scaling. Other studies have included regional terms in which the regional

terms are modeled as random effects (Kotha et al., 2016; Kuehn and Scherbaum, 2016; Stafford,

2014).
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In the studies mentioned above, regional differences have been demonstrated for broad re-

gions. This raises the question as to the scale for regionalization. For example, if Japan and

California have different scaling, are there differences in the scaling within these broad regions?

Landwehr et al. (2016) used the NGA-W2 Californian data subset used by Abrahamson et al.

(2014) to regionalize the GMPE using the spatially-varying coefficient model in which the co-

efficients of the GMPE depend on the longitude and latitude of the site and the earthquake

(Bussas et al., 2017). A large part of the NGA-W2 data in California is from small and moder-

ate earthquakes which are useful for constraining path and and site effects and average source

effects, but not for large magnitude scaling. Therefore, Landwehr et al. (2016) regionalized the

constant, distance, and site scaling terms but maintained the global magnitude scaling every-

where. They found that the regional differences in the source and path terms had correlation

lengths of about 20 km, whereas, the regional differences in the site terms had correlation

lengths of just a few km.

The varying coefficient model of Landwehr et al. (2016) models path effects as an average

over all directions for an event, which means that the path effects are not directional. Dawood

and Rodriguez-Marek (2013) proposed a method to include source-to-site specific path effects,

which models the attenuation along a specific path as the sum of attenuation in small cells,

each of which has its own cell-specific attenuation coefficient.

In this paper, we develop a fully non-ergodic GMPE combining the varying coefficient model

with the large distance scaling from the cell-specific approach. To demonstrate the approach,

we use the model to compute non-ergodic hazard for three sites in California.

2 Non-Ergodic PSHA

The goal in PSHA is to calculate the expected rate of exceedance for a ground-motion level A

ν(Y > A) =
∑
i

νi

∫
M

∫
R

fmi
(m) fri(m, r) P (Y > A|m, r, . . .)dr dm (1)

where Y is the ground-motion parameter of interest, and P (Y > A|m, r, . . .) is the probability

that Y is larger than A for a given magnitude, distance and other relevant parameters. The

functions fmi
(m) and fri(m, r) describe the densities of magnitudes and distances for the ith
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source. The exceedance probability can be calculated from the cumulative distribution function

(CDF) of a standard normal distribution, Φ(x).

P (Y > A|m, r, . . .) = 1− Φ

(
ln(A)− µ(m, r, . . .)

σ(m, r)

)
(2)

where the distribution of ln(Y ) is typically modeled as a normal distribution with median µ

and standard deviation σ. The median and standard deviation are functions of the source and

site related parameters

µ = g(~θ;m, r, . . .) (3)

σ = h(~β;m, r, . . .) (4)

where ~θ and ~β are coefficients of the models for the µ and σ given by f and g. Traditionally, the

coefficients of the empirical GMPEs are estimated by a regression analysis using the ergodic

assumption (Anderson and Brune, 1999), which means that the P (Y |m, r, . . .) is the same for

all sites with the same site conditions.

An ergodic GMPE is an average over all sources, paths, and sites of the underlying data

set. This leads to an inflated estimate of aleatory variability, because systematic effects are not

modeled (Lin et al., 2011). To move from an ergodic to a non-ergodic PSHA, the repeatable

systematic source, path and site effects need to be incorporated in the GMPE. This means that

P (Y |m, r, . . .) becomes explicitly dependent on source and site coordinates, which is achieved

by making the median ground motion dependent on the coordinates of the earthquake and the

site. Compared to an ergodic GMPE, there are source and site specific adjustment terms that

are added to the ergodic median prediction.

µnonerg(m, r, . . . , ~xsrc, ~xsite) = µerg(m, r, . . .) + δS(~xsite) + δL(~xsrc) + δP (~xsrc, ~xsite) (5)

where ~xsrc and ~xsite are the source and site coordinates, respectively. δS is a location-specific

site effect, δL is a location-specific source effect, and δP is a location-specific path effect.

The inclusion of the systematic, location-specific effects in eq 5 leads to a reduction in the

value of aleatory variability (Al-Atik et al., 2010; Lin et al., 2011). This is an example of how
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Figure 1: Non-ergodic PSHA

the separation of aleatory variability and epistemic uncertainty is not absolute and depends on

the model parameterization. The effects of parameters not included in the model are treated

as aleatory variability. Therefore, as additional significant predictive parameters are added to

the model, there will be reduced aleatory variability

Because the non-ergodic GMPE includes location-specific site, path, and source effects as

part of the median model, the epistemic uncertainties in these location-specific effects need

to be considered. If the available data sets are sparse for the specific source/site pair, then

the systematic source, path, and site effects can have large epistemic uncertainties that are

important to include in the PSHA calculations. This can be done in a logic tree framework

in which different values of the adjustment terms for each source/site pair occupy the logic

tree branches. For non-ergodic ground-motion models, each logic tree branch is a map of the

adjustment terms.

3 Non-Ergodic GMPE

In this section, we briefly describe the non-ergodic GMPE used to perform the hazard calcula-

tions. The non-ergodic GMPE follows the principles described in Equation (5) and consists of

an ergodic base GMPE that is adjusted by source, path, and site terms that explicitly depend
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on the source and site locations. The components of the non-ergodic GMPE are

µerg = fbase(M,RRUP , F, VS30, ZTOR) + fHW (M,RRUP ) + fNL−site(VS30, PSA1100)

(6)

δS(~xsite) = fsite(VS30; ~xsite) + δθ0A(~xsite) (7)

δL(~xsrc) = fgeom(RRUP ; ~xsrc) + δθ0B(~xsrc) (8)

δP (~xcls, ~xsite) = fattn(RRUP ; ~xcls, ~xsite) (9)

In this non-ergodic GMPE, there are five spatially dependent terms: the geometrical spread-

ing fgeom(RRUP ; ~xsrc), the linear VS30-scaling fsite(VS30; ~xsite), one site/source dependent con-

stant each, δθ0A(~xsite) and δθ0B(~xsrc), and the anelastic attenuation fattn(RRUP ; ~xcls).

There are two coordinates used for the source in Equation (9). For the source term, ~xsrc

is the coordinate of the center of the rupture. For the path term, ~xcls is the coordinate of the

closest point on the rupture to the site.

A suite of alternative ergodic base GMPE (Equation (6)) is derived based on the methodol-

ogy described in the Southwestern United States (SWUS) ground-motion model report (Geopen-

tech 2015). The suite captures the epistemic uncertainty in the base scaling of the ergodic

GMPEs. The adjustment terms of Equation (7) and (8) are taken from Landwehr et al.

(2016), while the anelastic attenuation term (Equation (9)) is calculated similar to Dawood

and Rodriguez-Marek (2013). These three parts of the ground-motion model are described in

the subsequent sections.

3.1 Ergodic Base GMPE

The suite of ergodic base GMPEs are derived based on the methodology used in the SWUS

project (Geopentech 2015). The goal of the method is to obtain a good representation of the

epistemic uncertainty in the main components of the scaling of the response spectrum with the

important predictor variables. The basic assumption is that there is a continuous distribution

of GMPEs, which can be derived from the range of published models that are considered

applicable to the southwestern US region.

The continuous distribution of GMPEs is approximated by the joint distribution of coeffi-
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cients of a GMPE function which is estimated by fitting a common functional form to a set of

published GMPEs, and then estimating the variances and correlations between the obtained

sets of coefficients. This is done in the following way. First, we generate response spectral val-

ues for a suite of scenarios with different magnitude, distance, VS30, ZTOR and focal mechanism

values F using the five NGA West 2 GMPEs (Abrahamson et al., 2014; Boore et al., 2014;

Campbell and Bozorgnia, 2014; Chiou and Youngs, 2014; Idriss, 2014). For each GMPE, this

gives a data set Di = {(M1, R1, VS30,1, ZTOR,1, F1, yi,1), . . . , (MN , RN , VS30,N , ZTOR,N , FN , yi,N)},

where N is the number of scenarios and yi is the vector of median ground motions computed

using GMPE i. Second, each synthetic data set from the underlying GMPEs is fit to the

following functional form

ln y = θ0 + gM(M) + (θ4 + θ5(M − 5)) ln
√
R2
RUP + θ26 − θ27RRUP

+ θ28ZTOR + θ29FR − θ210FNO − θ211 ln
VS20
760

(10)

gM(M) =


−θ1 + θ2(M − 5.5) M < 5.5

θ1(M − 6.5) 5.5 ≤M ≤ 6.5

θ3(M − 6.5) M > 6.5

where FR = 1 for reverse faulting and FNO = 1 for normal faulting. Some of the coefficients

are squared to constrain the sign of the coefficient to be consistent with physical constraints.

For each GMPE i, there is a vector θi = {θ0, . . . , θ11} of coefficients. These coefficient

vectors are assumed to be distributed according to a multivariate normal distribution


θ0
...

θ11

 ∼ N




µθ1
...

µθ11

 ,


Σ1,1 . . . Σ1,11

...
. . .

...

Σ11,1 . . . Σ11,11


 (11)

where the means and covariances of the coefficients can be estimated from the fitted sets of

coefficients. Equation (11) describes a continuous distribution over coefficients for a GMPE

parameterized by Equation (10). Therefore, it describes a continuous distribution of GMPEs.

For the hazard calculation, we sampled 100 sets of coefficients θ from their distribution to cover

the epistemic uncertainty in the base scaling of the GMPE. The magnitude and distance scaling

of the 100 sampled base GMPEs, as well as the underlying five NGA West2 models, is shown
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Figure 2: Scaling of base GMPEs, for RRUP = 20 and M = 6.

in Figure 2.

In addition to the base model scaling, nonlinear site effects and hanging-wall effects are

included in the suite of ergodic GMPEs. The nonlinear site amplification term is taken from the

model of Abrahamson et al. (2014) and is applied without epistemic uncertainty. The hanging-

wall term is taken from the SWUS project (Geopentech, 2015) which consists of five equally

probable HW models that capture the epistemic uncertainty in the hanging-wall effects. Each

sampled base set of coefficients is randomly paired with one of the five hanging-wall models.

3.2 Local Adjustment Terms from Landwehr et al. 2016

In this section, we describe the local adjustment terms (dependent on source or site coordinates)

of Equation (7) and (8). These comprise an adjustment to the geometrical spreading, the linear

site scaling, and the constant term. The constant terms has two parts: one term for the source

coordinate and one term for the site coordinate:

fgeom(RRUP ; ~xsource) = δθ4(~xsrc)
√
R2
RUP + θ26 (12)

fsite(~xsite;VS30) = δθ11(~xsite) ln
VS30
760

(13)

fconst = δθ0A(~xsite) + δθ0B(~xsrc) (14)

We assume that the the coordinate-dependent adjustment coefficients δθ(~x) from the spatially

varying coefficient model (VCM) of Landwehr et al. (2016) are applicable to each of the 100

base GMPEs. In the VCM, each model coefficient is a continuous function of either source or

site coordinate (cf. Figure 4 of Landwehr et al. (2016)). The VCM contains spatially varying
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Figure 3: Spatially varying adjustment coefficients δθ4(~xsource), controlling geometrical spread-
ing.

coefficients controlling the geometrical spreading and linear site scaling, as well as two con-

stants describing source and site effects. To generate Figure 4 of Landwehr et al. (2016), these

coefficients were calculated at a spatial grid over California of size 2 × 2km. At each grid

point, we calculate the difference between the coefficients at that grid point and the mean of

the respective coefficient–this results in local adjustments for each of the four spatially varying

coefficients. These adjustment terms are zero in regions where data is sparse, and potentially

large close to observed events/stations.

To simplify PSHA calculations, we use a slightly larger grid than Figure 6 of Landwehr

et al. (2016), dividing California into cells of size 5 × 5km. For each cell, we calculate the

mean adjustment coefficients for the four coefficients from all grid points inside that cell. As

an example, the mean local adjustment term for the geometrical spreading, δθ4 is shown in

Figure 3. For the rest of the spatially varying coefficients, we refer to Figure 6 of Landwehr

et al. (2016).

It is important to capture the epistemic uncertainty in the median adjustments for the non-

ergodic PSHA. The VCM of Landwehr et al. (2016) does not provide direct estimates of the

uncertainty of the individual coefficients, but it does provide the total epistemic uncertainty, ψ,

associated with ground-motion median predictions for different locations (cf. Figure 6 (b) and

Equation (11) of Landwehr et al. (2016)). We use the spatially-varying values of ψ as estimates

for the total epistemic uncertainty of all adjustment terms discussed in this section. Hence,
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Figure 4: Epistemic uncertainty ψ associated with median predictions of Landwehr et al. (2016)

the epistemic uncertainty associated with the adjustment terms δL(~xsrc) and δS(~xsite) is fully

modeled as uncertainty in the constants δθ0B and δθ0A, while the coefficients controlling the

source-location dependent geometrical spreading and site-location dependent VS30-scaling are

modeled as error-free.

As an example, the total ψ-values for PGA are shown in Figure 4. We partition ψ into

two parts, one accounting for source adjustments (σE) and one accounting for site adjustments

(σS):

ψ2 = σ2
S + σ2

E (15)

σ2
S = ρψ2 (16)

σ2
E = (1− ρ)ψ2 (17)

where the partitioning factor ρ depends on the number of events/station in each 5× 5km cell:

ρ = 0.2 + 0.6
1

1 + nS

nE

(18)

where nS and nE are the number of stations and events in a cell, respectively. Hence, if the

number of stations in a cell is large compared to the number of events, most of the epistemic

uncertainty is associated with the source adjustment and vice versa. We do not want to assign

the full epistemic variance to either the event or station term, so the partitioning factor ρ is
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Figure 5: Calculation of cell distances

constrained to be between 0.2 and 0.8. In the future, we plan to use directly the uncertainties

of the adjustment coefficients, which will avoid the problem of partitioning the variance ψ2, but

those are currently not available.

The partitioning factor ρ is modeled as spatially correlated using an exponential correlation

function (as in Landwehr et al. (2016)). Thus, we can partition the overall uncertainty ψ at

every location into a source-related part and a site-related part.

3.3 Anelastic Attenuation Term

The calculation of the non-ergodic anelastic attenuation term (cf. Equation (9)) is based on

the methodology proposed by Dawood and Rodriguez-Marek (2013). The region under study,

in this case California, is divided into rectangular cells of size 28 × 30km. For each recording

in the data set, the length of the ray path, ∆Ri, within each cell i is calculated, based on a

straight line from the site (~xsite) to the closest point on the rupture (~xcls). This is conceptually

shown in Figure 5. For each record, we have that
∑NC

i=1 ∆Ri = RRUP , where NC is the number

of cells.

The anelastic attenuation is modeled by a cell-specific coefficient θ7,i, so that

fattn(RRUP ; ~xcls, ~xsite) =

NC∑
i=1

∆Ri(~xsite, ~xcls)θ7,i (19)

This makes it possible to include path-specific attenuation in the GMPE.

The cell-specific attenuation terms are estimated from the Californian data set of Abraham-
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Figure 6: Number of paths

son et al. (2014). Figure 6 shows events, stations, paths and cell coverage. The ground-motion

data are first corrected to remove the nonlinear site effects and hanging-wall effects using the

model of Abrahamson et al. (2014). Using the corrected data, the residuals are computed with

respect to the central ergodic base GMPE (cf. Equation (10)), where all coefficients are fixed to

the values of the central model and the ergodic anelastic attenuation term θ7RRUP is replaced

with the non-ergodic one of Equation (19).

The model is cast as a Bayesian hierarchical model/multi-level model, where the individual

cell-specific attenuation terms θ7,i are assumed to be distributed according to a (truncated)

normal distribution:

θ7 ∼ N(µθ,7, σθ,7) T (0, ) (20)

The prior distributions for the mean and standard deviation of the cell-specific attenuation

parameters are a normal and a half-Cauchy distribution:

µθ,7 ∼ N(0, 1) T (0, ) (21)

σθ,7 ∼ HC(0, 1) (22)

where µθ,7 is a Californian mean attenuation parameter, and σθ,7 describes how much the
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individual coefficients can change across cells. To avoid a nonphysical attenuation term, the

θ7,i terms are required to be positive for each cell. This constraint is captured by the T (0, )

terms which means that the distribution is truncated to be greater than 0. The prior for the

standard deviation is a half-cauchy distribution as recommended by Gelman (2006), denoted

by the HC term.

The parameters are estimated via Bayesian inference using the program Stan Carpenter et al.

(2016); Team (2015). The results are shown in Figure 7 in terms of the difference between the

cell-specific attenuation and the mean attenuation, δθ7,i = θ7,i − µθ,7. The left panel shows the

mean values of the δθ7,i and the right panel shows the epistemic uncertainty on the value of

δθ7,i given in terms of the standard deviation of the δθ7,i.

The hierarchical nature of the model causes the mean of the cell-specific attenuation coeffi-

cients, µθ7,i, to automatically move towards the mean over all cells (δθ7,i goes to zero) for cells

that do not have a lot of coverage. This can be seen in the left panel of Figure 7 which shows

that cells with low path coverage (Figure 6) have mean cell-specific attenuation coefficients

that are close to the Californian mean, while their epistemic uncertainty is large (as shown in

the right panel). In these regions without data, the epistemic uncertainty in δθ7, i becomes

standard deviation of the posterior distribution of the θ7,i. If earthquakes at large distances

contribute significantly to the hazard, then it is important to take both the path effects and

the epistemic uncertainty in the path effects into account during hazard calculations.

4 Implementation for PSHA

In this section, we describe the steps necessary to perform a site-specific PSHA with the pre-

viously developed non-ergodic GMPE. Generally, the non-ergodic PSHA can be calculated like

an ergodic one, except that on has to add the necessary adjustment terms for each source, as

well as an adjustment term for the site.

To capture the epistemic uncertainty associated with the GMPE, 100 realizations are run–

this corresponds to a logic tree with 100 branches for the ground-motion model. Each branch is

a combination of an ergodic base GMPE (Equation (6)), a hanging-wall model, a site-specific

adjustment term, source-specific adjustment terms, and cell-specific attenuation coefficients.

The nonlinear site amplification and the source and site specific adjustment terms for geomet-
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Figure 7: ∆θ7 (left panel) and σ∆θ7 (right panel)
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Figure 8: Nonergodic GMM logic tree
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rical spreading and VS30-scaling are the same for all 100 GMPE realizations. The GMPE logic

tree is shown conceptually in Figure 8.

Before running the hazard calculation, we randomly sample 100 sets of the base coefficients

from the distribution of coefficients estimated in Section Ergodic Base GMPE, and pair them

randomly with one of the five SWUS hanging-wall models. We also randomly sample 100 sets

of constant source adjustments
−→
δθ0B(~xsource) from a multivariate normal distribution with mean

zero and a covariance matrix whose elements describe the spatial correlation of the source terms.

The diagonal elements of the covariance matrix are σ2
E, the partitioned epistemic uncertainty

from Landwehr et al. (2016) (see Local Adjustment Terms from Landwehr et al. 2016 and

Equation (15)), while the non-diagonal elements are calculated via an exponential covariance

function whose length scale is taken from Landwehr et al. (2016). Next, we sample 100 sets

of the cell-specific coefficients
−→
δθ7 from their posterior distribution. Finally, we sample 100

site-specific adjustments δθ0A, from a normal distribution whose mean and standard deviation

are determined by the cell in which the site is located. The mean corresponds to the value from

Landwehr et al. (2016), while the standard deviation is σS (cf. Equation (15)).

All of these sampled sets of coefficients are generated outside of the hazard code and are

read as tables. The adjustment terms for the geometrical spreading and the VS30-scaling are

the same across all 100 logic tree branches–their uncertainty is mapped into the constant terms.

The calculation of the distances within each cell for the cell-specific distance attenuation can

be computationally intensive in a hazard calculation for a large number of scenarios. Therefore,

we calculate the cell-specific distances to the site from each center point of each cell. Then, we

calculate the adjustment term fattn(RRUP ; ~xcell, ~xsite) =
∑NC

i=1 Θ7i∆Ri(~xsite, ~xcell) for the center

of each cell, where ~xcell is the center point of the cell. The adjustment term for the rupture

coordinate (closest point on the rupture) is then calculated as an interpolation of the four

closest cells.

With these steps, the hazard calculations can be done in a normal way. As with any hazard

code, there is a loop over the alternative GMPEs. Here, we are using non-ergodic GMPEs in

place of ergodic GMPEs. For the implementation of the non-ergodic GMPEs, there are some

additional calculations that need to be done within the hazard code: one needs to find the

index of the grids containing the site (~xsite) and the center of the rupture (~xsrc) and the four
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Figure 9: Hazard results: Left San Jose, middle SLO, right NE CA

cell around the closest point on the rupture plane (~xcls). With these indexes, it is a simple

lookup table for the non-ergodic terms.

5 Example PSHA Calculations

We calculate non-ergodic hazard for three different sites: San Jose, San Luis Obispo, and a

north-eastern California site. For San Jose, there exists a significant amount of ground-motion

data, for San Luis Obispo there exists some ground-motion data, whereas the north-eastern

California site lacks data in its vicinity. The source model is taken from the PG&Es source

models for these three regions. For comparison, we also calculate ergodic hazard for the three

sites, using the 100 ergodic base models. For simplicity, the aleatory standard deviation is

assumed to be magnitude independent value of 0.6 (ln units) for the ergodic case and 0.4 for

the non-ergodic case. Magnitude-dependent sigma models can be used, but here we have only

applied a constant sigma model.

The results are shown in Figure 9. For the north-eastern California site, the mean hazard

does not change compared to the ergodic model. This is expected because there is no ground-

motion data, so the average non-ergodic adjustment terms are zero and the reduction in the

aleatory variability is offset by the increase in the epistemic uncertainty in the non-ergodic

terms.

In the case of the other two sites, the mean hazard changes, and the epistemic uncertainty

is reduced compared to the case of no data. For the San Jose site, the non-ergodic hazard at

high exceedance rates is close to the ergodic hazard, but deviates strongly at low exceedance
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rates.

6 Discussion and Conclusions

The large increase in ground-motion data sets shows that ergodic GMPEs significantly overes-

timate the aleatory variability. We know that after removing the repeatable source, path, site

effects, the aleatory variability is about 0.4 ln units. This value of the non-ergodic aleatory

variability is stable for different regions of the world. The issue is that to use this lower value

of the aleatory variability in seismic hazard studies, the site/source specific source, path, and

site terms need to be estimated, including the epistemic uncertainty in the estimated values.

In the development of GMPE over the last decade, there is a clear move to non-ergodic models.

Site-specific site effects can be estimated using observed ground motions at the site or using

analytical site response methods with epistemic uncertainties on the inputs. This is standard

practice for critical facilities and it is used with the partially non-ergodic single-station sigma

method. Because path effects in the crust are in the linear range, the site-specific path effects

can be estimated empirically using recordings from small earthquakes. In addition, numerical

simulations with 3-D crustal models can provide constraints on the path effects. This approach

is being applied by SCEC as part of the Central California Seismic Project. Site-specific source

effects are more difficult to estimate empirically than path effects because it is not yet been

shown that source effects from small earthquakes in a region are correlated with source effects

for large earthquakes

The aleatory variability has a strong effect on the seismic hazard at low probability levels

typically used for design of structures. The move to non-ergodic ground-motion models will lead

to the largest changes in seismic hazard estimates since the change to including the aleatory

variability for ground-motion models in the 1980s. The non-ergodic approach should be used

in both regions with large amounts of data and in regions with sparse data. The key is that

lack of data does not mean certainty; lack of data implies large uncertainty. For regions with

sparse data, the aleatory variability is the non-ergodic value of about 0.4, but there will be

large epistemic uncertainty in the hazard due to the epistemic uncertainty in the site/source

specific source, path, and site terms. The mean hazard will be unchanged from the ergodic

model, but the non-ergodic approach will show the limitations of the available data which is
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masked with the ergodic approach.

Using the non-ergodic approach will show how large are the current uncertainties in the

hazard estimates. In many cases, the uncertainties will be large. To reduce the uncertainties

requires additional ground-motion data: from dense arrays of stations or from numerical simu-

lations using 3-D crustal models. Understanding the current limitations of the seismic hazard

information due to the uncertainty in the non-ergodic ground-motion models will help to make

the business case for seismic instrumentation and region-specific numerical simulations.
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Bussas, M., C. Sawade, N. Kühn, T. Scheffer, and N. Landwehr (2017, 4). Varying-coefficient

models for geospatial transfer learning. Machine Learning .

Campbell, K. W. and Y. Bozorgnia (2014, 8). NGA-West2 Ground Motion Model for the Av-

erage Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response

Spectra. Earthquake Spectra 30 (3), 1087–1115.

Carpenter, B., A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker,

P. Li, and A. Riddell (2016). Stan: A Probabilistic Programming Language. Journal of

Statistical Software VV (Ii).

Chiou, B. S.-J. and R. R. Youngs (2014, 8). Update of the Chiou and Youngs NGA Model for the

Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake

Spectra 30 (3), 1117–1153.

Dawood, H. M. and A. Rodriguez-Marek (2013, 5). A Method for Including Path Effects in

Ground-Motion Prediction Equations: An Example Using the Mw 9.0 Tohoku Earthquake

Aftershocks. Bulletin of the Seismological Society of America 103 (2B), 1360–1372.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian

analysis (3), 515–533.

Graves, R., T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve, C. Kesselman, P. Maech-

ling, G. Mehta, K. Milner, D. Okaya, P. Small, and K. Vahi (2011). CyberShake: A Physics-

23



Prel
im

ina
ry 

ve
rsi

on

Based Seismic Hazard Model for Southern California. Pure and Applied Geophysics 168 (3-4),

367–381.

Hiemer, S., F. Scherbaum, D. Roessler, and N. Kuehn (2011, 5). Determination of 0 and Rock

Site from Records of the 2008/2009 Earthquake Swarm in Western Bohemia. Seismological

Research Letters 82 (3), 387–393.

Idriss, I. M. (2014, 8). An NGA-West2 Empirical Model for Estimating the Horizontal Spectral

Values Generated by Shallow Crustal Earthquakes. Earthquake Spectra 30 (3), 1155–1177.

Kotha, S. R., D. Bindi, and F. Cotton (2016, 4). Partially non-ergodic region specific GMPE

for Europe and Middle-East. Bulletin of Earthquake Engineering 14 (4), 1245–1263.

Kuehn, N. M. and F. Scherbaum (2016, 10). A partially non-ergodic ground-motion prediction

equation for Europe and the Middle East. Bulletin of Earthquake Engineering 14 (10), 2629–

2642.

Landwehr, N., N. M. Kuehn, T. Scheffer, and N. Abrahamson (2016). A Nonergodic Ground-

Motion Model for California with Spatially Varying Coefficients. Bulletin of the Seismological

Society of America 106 (6), 2574–2583.

Lin, P.-S., B. Chiou, N. Abrahamson, M. Walling, C.-T. Lee, and C.-T. Cheng (2011, 9).

Repeatable Source, Site, and Path Effects on the Standard Deviation for Empirical Ground-

Motion Prediction Models. Bulletin of the Seismological Society of America 101 (5), 2281–

2295.

Morikawa, N., T. Kanno, A. Narita, H. Fujiwara, T. Okumura, Y. Fukushima, and A. Guerpinar

(2008). Strong motion uncertainty determined from observed records by dense network in

Japan. Journal of Seismology 12 (4), 529–546.

Power, M., B. Chiou, N. Abrahamson, Y. Bozorgnia, T. Shantz, and C. Roblee (2008). An

overview of the NGA project. Earthquake Spectra 24, 3.

Rodriguez-Marek, A., E. M. Rathje, J. J. Bommer, F. Scherbaum, and P. J. Stafford (2014). Ap-

plication of single-station sigma and site-response characterization in a probabilistic seismic-

24



Prel
im

ina
ry 

ve
rsi

on

hazard analysis for a new nuclear site. Bulletin of the Seismological Society of Amer-

ica 104 (4), 1601–1619.

Stafford, P. J. (2014, 3). Crossed and Nested Mixed-Effects Approaches for Enhanced Model

Development and Removal of the Ergodic Assumption in Empirical Ground-Motion Models.

Bulletin of the Seismological Society of America 104 (2), 702–719.

Team, S. D. (2015). Stan: A C++ Library for Probability and Sampling, Version 2.5.0.

Walling, M. and N. A. Abrahamson (2012). Non-Ergodic Probabilistic Seismic Hazard Analyses.

15th World Conference on Earthquake Engineering (15WCEE) (2008).

Wang, F. and T. H. Jordan (2014). Comparison of probabilistic seismic-hazard models using

averaging-based factorization. Bulletin of the Seismological Society of America 104 (3), 1230–

1257.

Yagoda-Biran, G., J. G. Anderson, H. Miyake, and K. Koketsu (2015). Between-Event Variance

for Large Repeating Earthquakes. Bulletin of the Seismological Society of America 105 (4),

2023–2040.

25



Review of “Uncertainties in GMPEs, Effect of Non-Ergodic Models: Seismic Hazard in 

California using Non-Ergodic GMPEs” by N. Abrahamson, N. Kuehn, M. Walling and N. 

Landwehr (SIGMA2-2018-D5-005/1, version 1) 

The authors present a procedure for the development of non-ergodic ground motion prediction 

equations by combining three previous approaches. Next they demonstrate the procedure for 

California. Finally, they compare hazard curves from ergodic and non-ergodic approaches for three 

sites in California. The report is interesting and significantly moves on the state-of-the-art in this 

important field. The approach appears correct and promising for application elsewhere.  

There are a number of editorial and technical issues that should be addressed in the next version of 

this deliverable (see below, where bold indicates the more important comments). Because the topic of 

this work is novel, there is little guidance on this topic in the public literature and the topic is poorly 

understood by the community, the authors are encouraged to spend some time expanding the 

explanations (perhaps by adding some more diagrams and examples) and being more verbose, 

particularly in figure captions. Finally, the resulting maps and graphs are interesting and warrant more 

care being spent on their production so that this work has the highest impact and encourages 

additional work in this field.  

1. Title, “GMPE”: It would be best to avoid an abbreviation in the report title. 

2. Front page: The reference number given in the top right-hand corner is “SIGMA2-2018-D5-

005/1” whereas elsewhere it is given as “SIGMA2-2018-D5-006/1”. This needs to be made 

consistent (I think that the front page is correct).  

3. Page 2: This report is stated to be based on a draft journal article but it is not clear if this 

article has been submitted nor to which journal. This should be clarified. The authors are 

encouraged to submit the manuscript. 

4. Page 3, ”sites site”: Delete “site”. 

5. Page 3: This Executive Summary would flow better with the last paragraph moved up to 

become the second paragraph. 

6. Page 4, “it controls the slope of the hazard curve”: It would be useful to clarify that this is true 

if all other parameters are kept constant because the slope of the hazard curve is affected by 

things other than the standard deviation of the GMPE. It would be useful for non-experts to 

state in which direction the slope changes with changes in the standard deviation: higher 

standard deviations lower slope. 

7. Page 6, “PRP, South Africa, SWUS, BCHydro, Hanford”): It would be useful to give the 

exact references for these studies as some of them will likely be unfamiliar to the average 

reader. 

8. Page 9, Figure 1: It would be useful to give an expanded caption to better explain this 

calculation. 

9. Page 10: It would be useful to define the various parameters in Equations 6 to 9 for non-

experts. 

10. Page 11, Equation 10: “VS20” should be “VS30” I assume. 

11. Pages 11-12, Figure 2: It is stated that 100 sets of coefficients are used but Figure 2 

appears to indicate that predictions of one of the actual NGA West2 models is not 

captured within these 100 sets (one of the red model higher than the grey ones about M 

5.5). Does this suggest the need to increase the number of models? Apart from increased 

computational time is there a reason for not generating many more sets? 

12. Figure 2: It would be useful to indicate which base GMPE is which by using different colours. 

Again, an expanded caption could be useful. 

13. Page 12, Equation 12: It would be useful to add a brief discussion of the assumption that 

the adjustment to the geometric spreading term only depends on the earthquake 



location and not the site location. Can this assumption be relaxed? On the other hand, the 

assumption that the site adjustment on depends on the site location is reasonable. 

14. Figure 3: This figure should be made larger to improve legibility. 

15. Figure 4: Similarly this figure should be made larger. 

16. Page 13, Equation 18: What is the source of this equation? It would be useful to add a 

couple of examples for different values of nS and nE to show the implications for this 

equation (and for Equations 16 and 17). 

17. Figure 5: This figure should also be made larger. It is currently very difficult to read. 

18. Page 15, “28 x 30km”: Why not “30 x 30km”? Or, in fact, another size entirely, e.g. 10 x 

10km or 100 x 100km? Is the cell size connected with the potential variations in geology? 

Or to the strong-motion network/earthquake density? 

19. Figure 6: Increase the size of this figure. 

20. Page 16, “Bayesian hierarchical model/multi-level model”: It would be useful to briefly 

explain what this means. 

21. Page 17, “half-cauchy”: It should be “half-Cauchy”. 

22. Page 17: The citations of Carpenter et al. (2016) and “Team (2015)” should be in brackets 

(and is “Team” the correct author name?). 

23. Section 3.3: Is there a risk of double-counting the spatial variability in the cells using 

this approach and the approach in Section 3.2 simultaneously? In some sense they 

appear to be capturing similar things (e.g. geometric spreading and anelastic 

attenuation are often difficult to constrain independently). 
24. Page 17, “100 realizations”: Is this sufficient to capture to full epistemic uncertainty in the 

results? 

25. Figure 7, left panel: Is the sometimes large changes in anelastic attenuation between two 

cells (e.g. in the middle of the State there are neighbouring point mid-blue and mid-red) 

justified given knowledge of the crustal properties? For example, does this map match 

with maps for Lg Q values from other studies?  

26. Figure 8: A slightly larger figure would be useful here. 

27. Page 19, paragraph “Before running … cf. Equation (15))”: This is a dense paragraph. It 

could be useful to expand the explanation slightly.  

28. Figure 9: The meaning of the red, blue, solid, dashed and dotted lines needs to be given in the 

caption or in a legend. An expanded caption would help too. These graphs are not particularly 

easy to read because of the large number of lines and their small sizes. As these are key 

figures it would be useful to spend some time making them more understandable. 

29. Page 23, Bussas et al. (2017): Add the volume and page numbers for this article. 

30. Page 23, Carpenter et al. (2016): Add the page numbers or DOI for this article. 

31. Page 24, Hiemer al. (2011): There seems to be something wrong in the title of this article 

(“Determination of 0 and rock site …”) – I think that “kappa” is missing. 

32. Page 24, Power et al. (2008): Add the page numbers for this article. 
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