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Executive summary 
 

Probabilistic Seismic Hazard Assessment (PSHA) has the goal to evaluate annual frequencies of 
exceeding a given ground motion Intensity Measure such as PGA (Peak Ground Acceleration), PSA 
(Pseudo Spectral Acceleration) etc. For this purpose, it is necessary to describe occurrence rates of 
earthquakes and the distribution of their magnitudes. The most popular distribution of magnitudes is the 
exponential distribution from the Gutenberg-Richter (GR) law. Numerous studies and applications 
showed that the GR distribution is pertinent to model the distribution of magnitudes in the lower and 
moderate magnitudes ranges. However, it deviates from the log-linear model in the higher frequency 
range. For this reason and to account for finite energy of faults, the GR distribution is generally truncated 
at a maximum possible magnitude value ����. The justification of the choice of ���� from physics or 
simple statistics is not straightforward. Concurrently, recent analyses showed that the maximum 
magnitude can have a major impact on the hazard curve when high return periods as required for safety 
analysis of NPP (20 000 years) are considered. 

This report addresses the estimation of the maximum magnitude in the truncated GR law by means of 
a Bayesian approach involving extreme value statistics. The Bayesian updating approach allows for the 
combination of different sources of information and to overcome the bias of the simple maximum 
likelihood estimator. The development of the prior distribution of maximum magnitude relies on drawing 
analogies to tectonically comparable regions to increase the dataset for the development of generic 
distribution that can be updated for particular configurations. This is achieved by the likelihood function. 
When Poissonian occurrence of earthquakes is assumed, then the maximum magnitude mmax as well 
as its probability distribution (linked to epistemic uncertainty) can be estimated by deriving the extreme 
value distribution analytically. We propose a new method to construct the likelihood function based on 
the distribution of extremes of the truncated GR law. The proposed method constitutes an improvement 
of former developments by EPRI, see Johnston (1994), and further promoted by USNRC (2012) where 
the Bayesian updating approach is used to account for prior information from similar tectonic zones and 
expert judgment. In the proposed method, only the completeness period of mmaxobs is required, so that 
there is no need to determine and use the exact completeness periods for magnitude bins of smaller 
events and to introduce the associated uncertainties. This makes the approach easy to implement and 
to apply.  

The proposed method is more rigorous and outperforms the EPRI/USNRC Bayesian updating approach 
in terms of precision. As for the EPRI method, the approach allows addressing the case where mmaxobs 
is outside its completeness interval. The analyses conducted in this report with simulated catalogues 
demonstrated the capability of the Bayesian updating approach to correctly estimate mmax for periods of 
observation available in France. It is acknowledged here that the analytical expressions of extreme value 
distributions can be derived as long as Poisson occurrence is assumed (the magnitude distribution can 
be the GR law or any other). 
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Introduction 
 

Probabilistic Seismic Hazard Assessment (PSHA) has the goal to evaluate annual frequencies of 
exceeding a given ground motion Intensity Measure (IM) such as PGA (Peak Ground Acceleration), 
PSA (Pseudo Spectral Acceleration) etc. For this purpose, it is necessary to describe occurrence rates 
of earthquakes and the distribution of their magnitudes. This is the step 2 in the Figure 1 . The 
methodology is illustrated in the same figure. PSHA is conducted in four steps as illustrated in the figure: 
it starts with earthquake source (1), recurrence (2) and ground motion (3) modeling and combines this 
information (4) to evaluate exceedance probabilities. The latter are determined as a function of IM by 
the hazard curve. 

���� 	 
� � ∑ ���� � ����� � � ���� 	 
|�, ��	������������������������������ !�"#   (1) 

 

 

Figure 1 : PSHA methodology. 

 

The hazard integral, equation (1), is evaluated for magnitudes in the range ���� and ����, where ���� 
is the maximum magnitude that can be expected for a given site. It is also generally acknowledged that 
the hazard integral has to be bounded by a minimum magnitude ���� below which no considerable 
impact on structures can be expected. The distribution of magnitudes ����,  evaluated in step 2 of 
Figure 1, allows for a characterization of seismic activity for each zone or source. The most popular 
distribution of magnitudes is the exponential distribution from the Gutenberg-Richter (GR) law. The 
maximum magnitude ���� is the upper value used to truncate the GR law. Numerous studies and 
applications showed that the GR distribution is a good choice to model the distribution of magnitudes in 
the lower and moderate magnitudes ranges. However, it deviates from the log-linear model in the higher 
frequency range. To account for finite energy of faults, the GR distribution is generally truncated at  ����, see Figure 2 . The figure represents the normalized number of annual exceedances of 
magnitudes m.  
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Figure 2 : Cumulative frequency-magnitude distribution, normalized to the number of events above 
magnitude 3, illustrating the GR law and truncated or bounded GR law considering finite mmax. 

 

 

Figure 3:  Impact of different choices of ���� (sigma study and 3 alternative approaches for mmax) on 
the hazard curve (annual probability of exceedance) for PGA and PSA at 1Hz, from Ameri et al (2014). 
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The justification of the choice of ���� only from physics or simple statistics is not straightforward. 
Concurrently, recent analyses showed that the maximum magnitude can have a major impact on the 
hazard curve when high return periods as required for safety analysis of NPP (20 000 years) are 
considered, see Ameri, 2014.  This is illustrated in Figure 3  where some result of the sensitivity studies 
conducted in SIGMA project are shown. The hazard curves obtained with ���� determined with different 
methods and assumptions differ for higher return periods. The 3 models represent the cases where 1) 
the SHARE values are adopted, 2) the Bayesian updating according to EPRI 1994 is used and 3) an 
increment and scaling based method using French data. More details can be found in the report by 
Ameri et al (2014). 

The maximum magnitude is generally determined for zones in which seismicity is assumed to be 
uniform. However, there are only few observations of extreme magnitudes in low to moderate seismicity 
regions such as France which makes it difficult to assign a reliable number to ����. The estimation of 
mmax by means of a Bayesian approach allows for the combination of different sources of information 
coming from physics, statistics and other available knowledge.  

This report addresses the estimation of the maximum magnitude in the truncated GR law by means of 
a Bayesian approach involving extreme value statistics. We propose a new method, which constitutes 
an improvement of former developments by EPRI, see Johnston (1994), and further promoted by 
USNRC (2012). The proposed methodology combines the distribution of extreme values of the truncated 
GR law with the Bayesian updating approach in order to account for prior information from similar 
tectonic zones and expert judgment. 

 

1. Short literature review 
 

There are essentially three types of approaches that have been pursued in the past to determine the 
maximum magnitude ����.  
The simplest method is purely empirical and consists of adding an increment (in general 0.5 magnitudes 
units) to the largest magnitude observed in the zone or region of interest (see e.g. the review in Wheeler 
2009). The physical approach consists in considering fault geometry, and length and possibly paleo-
seismicity to deduce information on the energy that could be released (see also Zöller & Holschneider, 
2016). In addition, deformation rates from geodetic data & long-term tectonic deformation are gaining 
increased interest for the determination of maximum magnitudes (e.g. Anderson 1979, Main & Burton 
1984, Moravos et al 2003, Rong et al 2017, Stevens & Avouac 2017). Eventually, the theory of statistics 
of extremes has been applied in engineering seismology since the early ‘fifties by different authors such 
as Nordquist, 1945, Epstein & Lomnitz, 1966, Knopoff & Kagan, 1977. The developments concern both 
the estimation of ���� of the truncated GR distribution and the direct estimation of the tails of the 
magnitude distribution by the generalized extreme value and Pareto distributions. Burton & 
Makropoulos, 1985 express the distribution of maximum magnitude by an extreme value distribution of 
Weibull type which has an upper bound to be estimated. The authors use no prior information so the 
uncertainty in the maximum magnitude is very large. Pisarenko et al., 2003, 2008, 2014, adopt the more 
general framework of the generalized extreme value distribution. The theory of extreme value statistics 
shows that the generalized extreme value distribution is the limit distribution of the maximum, of a series 
of independent random variables with same distribution under the condition of appropriate 
normalization. However, the scarcity of data in low seismicity regions can make it difficult to apply the 
latter methods. On the other hand, it is well known that the maximum likelihood estimator (MLE) of the 
magnitude used to truncate the GR law is biased (Kijko, 2004, 2012). The maximum likelihood estimate 
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corresponds to the maximum of the likelihood function which is always equal to the highest observed 
magnitude mmaxobs in this case, as illustrated in Figure 4 . As the number of observed earthquakes and 
thus the sample size n increases it becomes more and more likely that mmaxobs is the true mmax and the 
likelihood function gets more and more concentrated around this value. However, when increasing the 
sample size n, then the estimator converges to the “true” value but from below. Kijko, 2012 developed 
a bias corrected maximum likelihood estimator to estimate mmax. The derivation of the correction term is 
however based on some simplifying assumptions. 

The Bayesian updating approach adopted here allows for the combination of different sources of 
information, and to overcome the problem of bias of the simple maximum likelihood estimator (EPRI 
1994, USNRC 2012). The development of the prior relies on drawing analogies with tectonically 
comparable regions to increase the dataset for the development of generic distribution that can be 
updated for particular configurations (EPRI 1994, Ameri et al 2015). 

The Bayesian approach for estimation of ���� has been blamed for producing results that are also 
biased to low values, see for example in Kijko 2009. The authors however only consider the mode of 
the posterior (similar to the Maximum Likelihood solution) as the point estimate of ���� which leads to 
the bias and does not consider the full posterior density function or its mean. Here we use the full 
posterior distribution in the application of the Bayesian approach for ���� estimation, and confirm that 
the posterior mean, sometimes called the “Bayes estimator” (see e.g. Jaynes 2007) is a better point 
estimator for ����. Moreover, the case studies presented in USNRC (2012) confirm that the Bayesian 
posterior does not display any significant bias: “Therefore, it is concluded that the application of the 
Bayesian approach using the full posterior distribution should not lead to biased estimates of ����.” 
Obviously, if the data is scarce, then the posterior distribution is close to the prior such that the latter 
has a major impact on the estimation. This is why the prior distribution has to be developed with care. 
Nevertheless, we anticipate that the studies conducted here for French data showed that the available 
observations drive the estimations and have a significant impact on the estimates. 

 

 

Figure 4 : Convergence and bias of the MLE for mmax in the truncated GR law: the figure shows an 
example of likelihood functions for true mmax=6.8 and considering n=10 and n=100 observations. 

 
 
Zöller et al (2016) and Holschneider et al (2016) argue that the modeling context of a doubly truncated 
GR law allows for the inference of the maximum possible magnitude only if unrealistically large catalogs 
are available. The authors (Zöller et al 2013) suggest replacing it by the maximum expected magnitude 
on a particular time horizon, for which confidence intervals can be computed from an earthquake catalog 
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in the framework of Gutenberg–Richter statistics. This proposal can be useful in particular contexts, for 
example in the framework of a deterministic assessment where a Maximum Considered Earthquake 
(MCE) has to be defined. It has to be pointed out that the distribution of the maximum magnitude on a 
time horizon has a fundamentally different meaning from the estimation of the maximum magnitude in 
the truncated GR law. First, for determining the maximum magnitude in a time horizon in the framework 
of the GR law, it is still necessary to determine the truncation of the GR law or, else, to work with the 
untruncated GR law. The latter however leads to very high expected magnitudes for large time horizons 
such as considered in probabilistic risk assessment in the nuclear sector. Secondly, in contrast to the 
distribution of the maximum magnitude used to truncate the GR law, the distribution of the maximum 
magnitude on a time horizon does not represent epistemic uncertainty but aleatory variability (each of 
the maximum magnitudes could happen to be the maximum value over one such time interval, with 
different probabilities of occurence). This has to be taken into account when choosing for example a 
deterministic design value, such as the 95% non-exceedance value on the time horizon. 

Here, we rather show by means of simulated catalogues, that, when assuming the truncated GR 
distribution for the simulated magnitudes, it is possible obtain a meaningful estimate of mmax based on 
available data. The Bayesian updating approach does allow for the combination of evidence from prior 
information and data (USNRC, 2012) and thus to overcome certain problems raised by Zöller et al. 
(2014). 

 

2. Extreme value distributions 

Generalized extreme value distribution 

Extreme value theory is a branch of statistics that deals with the extreme values of probability 
distributions. Extreme value statistics provide mathematical methods and tools for the law of extremes 
defined by the tails of probability distributions. 

By the extreme value theorem the GEV distribution is the only possible limit distribution of properly 
normalized maxima of a sequence of independent and identically distributed random variables. It has to 
be acknowledged that a limit distribution may not exist. Nevertheless, the GEV distribution is often used 
as an approximation to model the maxima of long sequences of random variables. 

Let us consider a sequence of n random variables $#, $%, … , $� with common CDF '�(� and the random 
variable 

�� � max	,$#, $%, … , $�-     (2) 

The CDF of the maxima �� of the sequence is then simply expressed as: 

P��� / (� � '�(��.      (3) 

However, the function '�(� is generally not known. Moreover, small errors on the quantity '�(� can lead 
to important errors in the product '�(��. An alternative consists in the direct estimation of the quantity '�(��.  It can be shown that for large n and when choosing appropriate normalizing constants an, bn 

(see e.g. Coles, 2001) we have: ��0�12��� / 3� → 5�3� where 

5�3� � 6(7 89 :1 < = >?1@A BC1#/EF     (4) 

represents the family of generalized extreme value distributions (GEV), with parameters G, H 	 0 and = 
that have to be determined. The parameters	G and H define localization and scale. The parameter = is 
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called the “shape parameter” since it determines to which of the three possible families of extreme value 
distributions the variable belongs.  

The three CDF of the GEV family have different domains of attraction. For = � 0 the GEV yields the 
Gumbel distribution. It is unbounded (no lower and upper bound) and is also referred to as the extreme 
value distribution of type I (GEV I): 

5J�3� � 6(7K96(7,9�3 9 G�/H-L,      9∞ N 3 N ∞.  (5) 

For = O 0, et P3:	1 < = >?1@A B 	 0R we have: 

5�3� � 6(7 89 :1 < = >?1@A BC1#/EF.    (6) 

In the other cases: 

• If = 	 0, 5�3� yields the Fréchet distribution with a lower bound, it is also known as the extreme 
value distribution of type II (GEVD II).  

• For = / 0, 5�3� yields the returned Weibull distribution with an upper bound: 5�3� � 1 si	3 � G 9AS  (distribution of the minima), this is called the extreme value distribution of type III (GEVD III).  

The typical shapes of the three different distributions are illustrated in Figure 5  below. The Fréchet 
(GEVD II) distribution exhibits a thick tail while the Gumbel distribution (GEVD I) has a light tail, the 
Weibull distribution (GEVD III) has an upper bound. The ordinary Weibull distribution occurs in numerous 
reliability problems and is obtained by using the variable  T � G 9 3 which leads to a strictly positive 
support for the probability distribution. The exponential and normal distribution have extreme value 
distributions of type I (this concerns the GR law if it is not truncated by mmax). 

The extreme value distribution is max-stable, which means that the maximum of a suite of k maxima ��,#, …��,U follows the same distribution as ��,  under the condition of proper normalization (localization 
and scale). More precisely, a distribution G is said max-stable if there exist constants an, bn such that 5�V�3 < W	��� � 5�3�.  
 

 

Figure 5 : Illustration of the three types of extreme value distributions. 
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The parameters of the generalized extreme value distribution are generally estimated by maximum the 

likelihood estimator.  For a given set of parameters P3�:	1 < = >?1@A B 	 0R , X � 1,…Y	, et = O 0, the log-

likelihood function reads   

Z�[�|G, H, =� � 9Y	lnH 9 �1 < 1/=�∑ ln :1 < = ?�1@A C 9 ∑ :1 < = ?�1@A C1#/E��"#��"#  (7) 

It is possible to regularize the optimization problem by the introduction of an a priori information on the 
parameters by a Bayesian approach. 

 

Generalized Pareto distribution (GPD) 

We consider a random variable with cumulative density function (CDF) '�(�. The CDF of the 
exceedance of a threshold u can be expressed as the conditional probability density function (PDF) (e.g. 
Coles 2001):  

P�$ 	 ^ < 
|$ 	 ^� � #1_�`ab�#1_�`� , 
 	 0.     (8) 

In general, '�(� is not known, but it can be approximated by the generalized Pareto distribution. More 
precisely, for u sufficiently large, the CDF of  
 � �( 9 ^� conditioned on $ 	 ^, can be approached by 
the Generalized Pareto Distribution (GPD): 

c�
� � 1 9 �1 < =
/Hd	�1#/E,      (9) 

,
:			
 	 0	, �1 < =
	/Hd� 	 0- 
where Hd � H < =�^ 9 G�  (with increasing threshold, the distribution tends towards the Pareto law). The 
parameter	= is equal to the one of the generalized extreme value distribution. If = / 0, then the 

generalized Pareto law is bounded by an upper threshold equal to  G 9 AeE . 
Example: Given the exponential distribution '�(� � 1 9 61b, one has  

#1_�`ab�#1_�`� � 61b  for all y, which 

corresponds to = � 0 and Hd � 1 in the GPD. 

 

 

Figure 6 : Examples of two Pareto laws (unbounded and with upper bound) to represent the tail of a 
distribution. 
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Implication on earthquake recurrence and extreme magnitudes 

For earthquake recurrence, this means that if the truncated GR distribution is assumed, then the CDF '�(� is known (it is indeed a truncated exponential distribution) and the extreme value distributions can 
be derived analytically. By construction, it is in the domain of attraction of the GEV of type III with an 
upper bound. More precisely, it is the Weibull distribution with upper bound and  = / 0.  The upper value 
of the considered variable (x) is given by the relation  G 9 AE  . The parameters of the extreme value 

distribution can be estimated by the maximum likelihood method (Coles, 2001). The most commonly 
used recurrence model is the GR law assuming Poissonian occurrence of earthquakes. It explicitly 
excludes aftershocks and more generally triggered events. The model and the associated extreme value 
distributions are described with more detail in the following section. If no assumption is made on the 
distribution of the magnitudes, then the estimation of the parameters of the GEV allows for assessing 
whether the data predicts a bounded distribution and to evaluate the parameters.  However, if, as it is 
currently common practice, a truncated GR model is assumed than the most coherent and robust way 
is to introduce this information in the Mmax parameter estimation as derived in the following sections. 

The estimation of Mmax by extreme value distributions is illustrated in Figure 7  to Figure 9 below. The 
blue dots are the magnitudes obtained for a simulated catalogue using the GR law with b=0.9, λ=3.75, ���� � 4.0 and ���� � 7.0.  The details of these models are given in the section below. At this stage, 
the figures are only shown for illustration. 

Figure 7  shows two examples of sample of extreme magnitudes retained for the GPD approach 
considering two different thresholds. The threshold is Mw = 5.5 on the left side and Mw=6.0 on the right 
side. The result depends of course on the particular sample catalogue. The simulations are done for a 
catalogue of 2018 years and there is considerable variability. Figure 8  shows another result for Mw=6.0 
but this time, there is no exceedance. 

 

 

  

Figure 7: Illustration of sample of extreme magnitudes retained for estimation with GPD approach and 
choosing a threshold of Mw=5.5 (left) and Mw= 6.0 (right). All magnitudes above the threshold (red 

dots) are retained for statistical analyses. 
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Figure 8: Another example sample of extreme magnitudes retained for estimation with GPD approach 
and choosing a threshold of Mw= 6.0. There is no magnitude above the threshold. 

 

Figure 9  shows two examples of sample of extreme magnitudes retained for the GEV approach 
considering two different choices of time intervals. There is only one time interval and the maximum 
magnitude on the left side and 10 intervals leading to a sample of 10 extreme magnitudes on the right 
side. We anticipate here that, when construction the likelihood function for the extreme values (GEV 
approach) of the GR model, then there is no considerable difference in the result when considering one 
long interval (duration of catalogue) associated to the maximum observed magnitude as compared to 
the case where that time interval is partitioned into 10 subintervals and the sample of 10 maximum 
magnitudes is studied. A similar conclusion is drawn in Zöller & Holschneider (2016). 

Lastly, we illustrate, the  

• possibility to estimate parameters of the GR law by direct estimation with the extreme value 
distributions 

• convergence of the direct estimation as a function of the duration of the catalogue 

The parameters of the GR law are the same as in the former simulations. It has to be pointed out that 
these values correspond to a high seismicity region. The parameters close to French data (see section 
4) were not used for this illustration, because the estimated extreme value distributions were in many 
cases unbounded. It is also acknowledged that the simulated catalogues do not address the issue of 
completeness since we consider that the underlying GR distribution is known on the whole magnitude 
interval.  

We construct 1000 simulated catalogues with duration T= 2000, T = 4000 years and T = 8000 years, 
divided respectively into 10, 20 and 40 time intervals of 200 years and we estimate the parameters of 
the GEV distribution using the maximum likelihood estimator. Again, the simulations have been 
performed for the high seismicity GR parameters. It is acknowledged here, the considering GR 
parameters from the French catalogue (low to moderate seismicity) leads in most cases to unbounded 
GEV distribution. 
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Figure 9:  Illustration of sample of extreme magnitudes retained for estimation with GEV approach and 
partitioning the period if observation respectively in only time interval (left) and 10 time intervals of 100 
years each (right) where the maxima are retrieved. The maxima of the considered time intervals (red 

dots) are retained for statistical analyses. 

 

 

Figure 10:  Histogram of the sample of 20 extreme magnitudes in the catalogue (Data, 20 time 
intervals of duration 500 years) and fitted GEV distributions (red) compared to the known analytical 

extreme value distributions (magenta). 

 

The simulation of a set of 1000 catalogues allows for the estimation of the mean together with its 
standard deviation (std). Remember that the exact (known underlying) value is here  ���� � 7.0. For 
T=8000 years the std is small which means that a reliable and accurate estimate could be obtained with 
one catalogue (as would be the case in real life) if it is complete (which is not the case in real life). Figure 
10 shows the histogram of the data (one simulated catalogue) together with the estimated GEV 
distributions. It can be observed that the empirical distributions are close to the underlying analytical 
distributions (used for the simulation of the catalogue) for T = 8000 years. For T=2000 years, the 
statistics were established by disregarding the 3 cases where an unbounded GEV was identified.  

The application also highlights that a direct application of the extreme value distribution is not feasible 
in low to moderate seismicity areas under the assumption of a GR law. 
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Table 1: Mean and std of the sample of posterior means of mmax determined from 1000 simulated 

catalogues for different durations T divided into time intervals of 200years. 

catalogue  T = 2000 years  T = 4000 years  T = 8000 years  

mean m
max

  6.99 6.99 6.99 

std m
max

  0.36 (3 catalogues 
lead to unbounded 

mmax distributions and 
were discarded) 

0.094 0.015 

 

Poisson model for earthquake recurrence 

The occurrence of earthquakes is generally modelled by the Poisson distribution. It is a discrete law that 
models the number of events over a given time interval.  

Given  λ , the mean number of occurrences in the time interval, the probability that there are exactly k 
occurrences is expressed as 

7i�j, T� � �kl�mU! 61kl , j � 0,1,2…     (10) 

The mean and the standard deviation of the Poisson law are equal λ. The sum of two independent 
Poissonian random variables still follows the Poisson distribution. It is thus possible to sum the activity 
of two faults or zones. 

In consequence, the probability to have no event between the instants 0 and t can be written as: 7i�0, T� � ��p 	 T� � 61kl. This expression allows for deriving the cumulative density function for the 
time intervals T (we note capital letter to design the random variable and not the particular realization t): 

'q�T� � 1 9 61kl     (11) 

where T is the random variable modelling the time between earthquake events. The probability density 
function of T is obtained by differentiation: 

�q�T� � �61kl , T 	 0.      (12) 

The Poisson model thus implies an exponential distribution of the intervals t between two events.  

 

The Gutenberg-Richter magnitude distribution and associated extreme value distribution 

The Gutenberg-Richter (1954) law expresses the annual rate of earthquakes of magnitude M exceeding 
the value m as:  

ln ��� 	 �� � r 9 s�     (13) 

where α (global ratio of earthquakes in the zone considered) and β (ratio between earthquakes with 
small and large amplitude, a larger β-value means that there are more small earthquakes) are 
constants.1 

                                                   
1 The GR has been initially derived in log10 base. The equations are recalled in appendix 2. 
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Introducing moreover the smallest considered magnitude mmin, the annual rate of earthquakes with 
magnitudes larger than m then reads: 

ln ��� 	 �� � r 9 s�� 9�����     (14) 

For simplicity we note in what follows �� � ��� 	 �� such that ����� � 6u is the annual rate of 

earthquakes. The expression above allows for determining the cumulative density function (CDF) of 
magnitudes larger than ���� with ����� � �v as: 

'0��� � 8 0,																� N ����1 9 61w��1�����, � 	 ���� ,   (15) 

The probability density function (PDF) of magnitudes then reads: 

�0��� � 8 0,																� N ����s		61w��1�����, � 	 ����    (16) 

Introducing the truncation by the upper magnitude mmax we have: 

'0��� � x 0yz{����1yz{�yz{����1yz{����1 							 � N �������� / 	m / ����� � ����         (17) 

and the distribution of magnitudes becomes: 

�0��� � x 0wyz{�yz{����1yz{����0 							 � N �������� / 	m / ����� � ����     (18) 

or, for ���� N 	m	 N 	���� 	:   �0��� � w		yz{��z�|}~�#1yz{�����z�����  . 
Under the assumption of Poissonian occurrence and adopting the GR law, one can show that the annual 
maximum magnitudes follow a Gumbel distribution (extreme value distribution of type I). Indeed, the 
theorem of total probabilities allows writing the probability that all magnitudes, observed over a time 
horizonτ, are less than m as: 

5��� ����v��Uj! 61k���
U"v

�'0����U , 
� 6(7�9�v��1 9 '0�����     (19) 

The above expression is the cumulative density function of maximum magnitudes over the period τ, 
called 5���. The corresponding density function reads: 

���� � ������� � �0���	�v�	6(7�9�v��1 9 '0�����   (20) 

The GR law without upper truncation yields '0��� � 1 9 6(7�9s�� 9������ which leads to the 
following expression for the distribution of maximum magnitudes observed over the period τ: 

5��� � 6(7�9�v�	6(7�9s	�� 9 �������    (21) 
 

Relation (21), called also Lomnitz formula (Epstein & Lomnitz 1966) in the literature, represents the 
extreme value distribution of type I.  

Likewise, it is possible to derive the distribution of maxima accounting for the truncation of the GR law 
by ���� according to equation (10). In this case, we obtain the following expression for  ���� N 	m	 N	���� : 
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5��� � exp :9�v�	 > ����1w�����1����1w������1w�����1����1w�����BC   (22) 

In order to simplify the notations, we will write in what follows �v for the annual rate of earthquakes with 
magnitude larger than ���� (instead of	�����). 

 

3. Estimation of maximum magnitude by means of Bayesian approach using 
the extreme value distributions 

 

In what follows, we first give a general description of the Bayesian updating approach. We then show 
different ways to construct the likelihood function based on the extreme value distribution and conclude 
with the proposed approach. Afterwards, the EPRI Bayesian updating procedure is described and 
advantages of the new method proposed here are highlighted.  

Bayesian updating 

The Bayes theorem allows us to write the posterior distribution of the maximum magnitude ����, 
denoted	������|�W�� , as a product of the prior distribution �v������ a of ���� and the likelihood: 

������|�W�� � �	Z��W�|������v������    (23) 

with an appropriate normalizing constant c. In this expression, the likelihood function 	Z��W�|�����	expresses the probability to observe the data (obs, here: regional catalogue), given the 
model parameter ����. In order to apply the Bayesian updating we have to determine a suitable prior 
distribution. For the maximum magnitude, the prior distribution is estimated from a greater amount of 
data coming from regions with similar tectonics and geological configurations (see EPRI). Figure 11  
provides an illustration of the Bayesian updating approach for ����. 
Different ways to express the likelihood function b ased on the distribution of extremes 

The data required to construct the likelihood functions is the observed �����2!  and the duration T 
(duration of catalogue). The likelihood functions are defined based on the extreme value distributions 
for Poissonian occurrences using the equations (19) and (20) derived in the previous section. If the GR 
law is assumed, then this yields equations (21) and (22). Nevertheless, any other magnitude distribution 
parameterized by mmax could be used in the likelihood functions developed below. 

The first two function (equations (24) and (25) are applicable only if �����2!  is included in the more 
recent part of the catalogue, with data available over the time interval T (for example 1750-2016 for the 
French catalogue). 
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Figure 11:  Illustration of the Bayesian updating approach applied to the estimation of mmax, 

figure from PEGASOS. 
 

 

 

  

Figure 12: Illustration of methods 1a) (left) and 1b) (right) for the construction of the likelihood 
function. 

 

 

1a) Probability to observe m
maxobs

 on interval T (duration of catalogue) 

Z��W�|����� � �������2!|�����      (24) 

 
1b) Probability to observe set of m

max_ti
 on n time intervals ∑ ����"�  

Z��W�|����� � ∏ ������_l�	|����� l�     (25) 
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Figure 13 : Illustration of method 2) for the construction of the likelihood function. mmaxobs can be 
outside the completeness interval. 

 

The two cases 1a) and 1b) are illustrated in Figure 12  for one of the French macrozones introduced in 
the application section. If the largest magnitude per interval is larger than the completeness magnitude 
of the considered time interval, then no special consideration of completeness is required to construct 
this likelihood function for data from a catalogue. The parameters that define the likelihood function are 
the durations and the values of the maxima over this time interval. Numerical analyses showed that the 
result is the same of the catalogue is partitioned into equal intervals and the block maxima are used or 
if the maximum observed earthquake on the whole duration is considered. This is also the conclusion 
of Zöller & Holschneider (2016). Additional information on past earthquakes is only helpful to constrain 
the parameters of the seismicity model, for example, the GR parameters a and b. This means that the 
whole duration T together with �����2!  should be chosen (point 1 a) above) to construct the likelihood 
function since the completeness interval for �����2!  is generally rather large.  It allows considering the 
whole (recent part) catalogue without considering the issue of completeness for smaller events, i.e. other 
than for the justification of the duration  T(�����2!). 
However, in some cases, the maximum observed earthquake might be outside the interval T, such as 
for paléo-earthquakes (see Figure 13 ). In this case, the likelihood function of relation (24) is not 
applicable, nor the likelihood function given by relation (25). In the latter case, we can still use the 
constraint that the largest magnitude in the time interval T is less than �����2!. This is the approach 
developed in what follows and recommended for further applications.  

 

 
2) Probability that m < m

maxobs
 on interval T (completeness period for m

maxobs
) – proposed 

approach 
Since �����2!  is the largest earthquake observed in the zone, we know that all other earthquakes 
observed over the period T of the catalogue are less or equal than this value. We use this information 
to write the likelihood function as the probability that the largest magnitude in the time interval T is less 
than �����2! : 

Z��W�|����� � 5������2!|�����     (26) 
 

Equation (26) is the most general approach and can be applied even if �����2!  is outside considered 
completeness interval T.  
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Figure 14 : Illustration of the EPRI method for the construction of the likelihood function. The 

number of earthquakes in the completeness period of mmin (magenta dots) are considered. Here, 
mmaxobs is outside the completeness interval (red dot). 

 

 

This is illustrated in Figure 13 for one of the French macrozones introduced in the application section. 
In the other cases, it provides estimation equivalent to the former relation (24). In consequence, relation 
(26) will be retained in what follows. 

The method does not require any special consideration of completeness periods as long as �����2!  is 
in the completeness period of the duration T and this is generally the case. It can be used if �����2!  is 
outside the considered duration T(�����2!) of the catalogue.  

In what follows, we present the EPRI – USNRC approach and highlight the advantages of the new 
method proposed here. 

 

EPRI method 

 

Probability that m < m
maxobs

 over sets of N observations  
 
EPRI (1994) has developed Bayesian updating approach where the likelihood function expresses the 
probability that all magnitudes in a set of N observations are less than �����2! . This approach is also 
the recommended USNRC (2012) approach. The likelihood function reads: 

 

Z��W�|����� � '0������2!�     (27) 

It is noteworthy that this expression (no exceedance for N observations) is close to the expression used 
to derive the GEV given by equation (3).  

 

 

Number of events in 

completeness period for  ���� 
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Using the equation (17) for the GR law, we obtain 

Z��W�|����� � '0������2!� � 
 

� � 0 ���� N �����2!#�yz{����1yz{������ 6 �6     (28) 

 
where the constant c depends on �����2!. 
 
The EPRI Bayesian updating approach uses only the number of observations between ���� and �����2!  and does not account for duration over which the N observations are made. This is one major 
shortcoming. Moreover, the period, over which these earthquakes can be collected and considered in 
the updating is much smaller than in the new approach proposed here. Indeed, only earthquakes in the 
completeness periods of ���� can be considered in the count (N) and the completeness period of ���� 
is much smaller than that of �����2! . Therefore, the method proposed here leads to smaller confidence 
intervals and a more accurate estimate. The data used for the EPRI method is illustrated in Figure 14 . 

 

 

 

Figure 15:  French Macrozones, GEOTER 

 

4. Application and case studies 
 

We apply the Bayesian updating approach to simulated catalogues and French data. 
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Figure 16 : Derivation of the GR parameters for macrozone D1, figure from GEOTER. 

 

French macrozones 

The scarcity of larger magnitudes in moderate and low seismicity regions makes it difficult to obtain 
significant statistics for smaller zones, such as they are often used to derive GR parameters. This why, 
in the SIGMA project, GEOTER has developed a new division of the French territory that aggregates 
the smaller zones to 6 macrozones.  The macrozonation is shown in Figure 15 , where Active domains 
(D 1) are distinguished from the intermediate activity domain - Rhine (D2), the intermediate activity 
domain - Mediterranean (D3), the intermediate activity domain - Central Massif (D4) and low activity 
domain (D5), very low activity domain (D6).  

In what follows, we will perform analyses for macrozone 1. 
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Figure 17 : Priori distribution determined for France compared to former distributions from EPRI and 
CEUS, figure from Ameri et al (2015). 

 

 

Zone 1 

The macrozone 1 comprises the French mountainous domains. It is the zone with the highest seismicity. 
We use the prior distribution for zone D1 developed by Ameri et al (2015) with the following 
characteristics: 

• Truncated normal distribution 
• mean Mw=6.8, sigma Mw = 0.4 
• max Mw = 7.5, min Mw = 5.5 

The GR parameters derived by GEOTER in the SIGMA project for the macrozone D1 are shown in 
Figure 16. The parameters were derived for magnitudes larger than ���� � 4,5. The largest observed 
magnitude in zone D1 is  �����2! � 6,7, which occurred within the completeness period T considered 
(see Figure 18 ). 

 

Prior distribution 

Figure 17  shows possible candidates for prior distributions. These distributions have been estimated 
from a greater amount of data coming from regions with similar tectonics and geological configurations 
(see EPRI 1994, Ameri 2015). 

The prior distributions developed by EPRI and others are assumed be Gaussian without upper or lower 
truncation. Such a model is not in agreement with physics nor with expert judgment. In order to address 
this issue, there are two possibilities: 

• Define an upper and lower magnitude to truncate the Gaussian prior distribution 
• Choose another distribution with a more gradual tail or with explicit upper/lower bounds 

In what follows, we have chosen to retain the Gaussian distribution developed by Ameri et al (2015) for 
France. As proposed in USNRC, a bias correction was applied when developing the prior distribution 
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from data. The bias correction is based on the assumption that the size distribution of earthquakes in a 
source region corresponds to a truncated exponential distribution between a specified minimum 
magnitude and the maximum magnitude for the region (USNRC) and the number of data is corrected 
for completeness. More details can be found in Ameri et al 2016. We will compare results for the initial 
Gaussian and the truncated Gaussian prior distribution.   

 

Analyses conducted with simulated catalogues 

The application of the methodology to simulated catalogues allows for an assessment of the accuracy 
and the convergence of the estimation for given periods of observation. For the simulated catalogues, 
we chose values for the GR parameters that are close to those of the French macrozone D1 described 
in the following section. The parameters assumed for the truncated GR law parameters used to simulate 
the catalogues are:  mmin = 4.5, b = 0.79, �v = 0.8. The mmax value depends on the study cases. The 
prior distribution is the one described above for zone D1. We furthermore compare the results to the 
case where a lognormal prior or a Gaussian prior without truncation is considered. When uncertainty is 
considered, then a Gaussian error term with a standard deviation of 0.1 is added to the simulated 
magnitudes. This is a very small value that might not be adequate for the more ancient parts of the 
catalogue. A more realistic scenario for magnitude uncertainty, depending on the date of the events, will 
be considered later on. The likelihood function is constructed by means of the distribution of extremes 
of the truncated GR law using the proposed method given by equation (26). The following two series of 
studies are conducted: 

1) We assess the accuracy of the estimations for different values of mmax. Since, in contrast to the 
observed earthquake data, the mmax value is known for the simulated catalogues, we can 
compare mmax estimated as the mean of the posterior density function to the “true” value, where 
the accuracy is formally the difference between the two. Independently, the precision is 
determined by Bayesian Intervals on the posterior distribution, or estimated from metrics such 
as the standard deviation in the mean. We consider maximum magnitudes in the range Mw = 
6.0 to Mw = 7.2. To assess the variability, we compute 1000 catalogues for each study case 
considering T =266 years. 

2) We analyze the convergence of the estimations by increasing the period of observation to T=500 
years and T=1000 years.  To assess the variability, we compute 1000 catalogues for each study 
case with mmax = 6.5. and mmax = 7.0. 
 

Figure 18  below shows the histogram for an example catalogue. The figure shows the histogram of the 
magnitudes together with the truncated GR target distribution as defined above and for mmax= 7.0 and 
T = 250 years. Figure 19  shows the likelihood functions for that same example with mmax= 7.0. Figure 
20 shows the different priors together with the posterior distribution of mmax. 
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Figure 18: Histogram of magnitudes in a simulated catalogue and comparison to truncated GR target 
distribution with and without consideration of magnitude uncertainty for mmax = 6.5 (left) and mmax = 7.0 

(right). 
 

 
 

 
Figure 19: Likelihood functions for the case with and without considering uncertainty of 
magnitudes (example catalogue) and true mmax used to simulate the catalogues (red). 
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Figure 20:  Comparison of the posterior distributions (solid lines) for different priors (dotted lines).  The 
posterior distributions are nearly superposed. The Bayes estimator is here the posterior mean 

(magenta) for the normal prior. 

 
 

Study case 1) 

All results have been obtained for T = 266 years of observation and a sample of 1000 simulated 
catalogues. We assume the underlying frequency-magnitude distribution is known, and do not account 
for this potential source of uncertainty at this stage of the investigation. Table 2  to Table 5 show the 
estimated posterior mean and its std for true mmax values increasing from Mw = 6.0 to Mw = 7.2. 

 
Table 2 Estimated mean and std for true mmax = 6.0 and considering the 3 different priors. 
 

prior  Trunc. 
normal 

lognormal normal 

mean 6.02 6.02 6.02 

std  0.04 0.04 0.04 
 

prior  Trunc. 
normal 

lognormal normalal 

mean 6.11 6.11 6.11 

std  0.10 0.10 0.10 
 

no uncertainty with magnitude uncertainty 

 
 
 
Table 3  Estimated mean and std for true mmax = 6.5 and considering the 3 different priors. 
 

prior  Trunc. 
normal 

lognormal normal 

mean 6.57 6.56 6.56 

std  0.09 0.09 0.10 
 

prior  Trunc. 
normal 

lognormal normal 

mean 6.61 6.62 6.62 

std  0.12 0.13 0.13 
 

no uncertainty with magnitude uncertainty 
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Table 4    Estimated mean and std for true mmax = 7.0 and considering the 3 different priors. 
 

prior  Trunc. 
normal 

lognormal normal 

mean 6.99 7.00 7.00 

std  0.14 0.15 0.15 
 

prior  Trunc. 
normal 

lognormal normal 

mean 7.01 7.03 7.03 

std  0.16 0.17 0.17 
 

no uncertainty  with magnitude uncertainty 

 

Table 5 Estimated mean and std for true mmax = 7.2 and considering the 3 different priors. 
 

prior  Trunc. 
normal 

lognormal normal 

mean 7.10 7.13 7.13 

std  0.16 0.18 0.18 
 

prior  Trunc. 
normal 

lognormal normal 

mean 7.12 7.16 7.15 

std  0.17 0.19 0.19 
 

no uncertainty with magnitude uncertainty 

 

The analyses show that the Bayesian updating provides good results in the range of magnitudes likely 
to be the true maximum value for the French context and for observation periods available. Note that in 
the application to the French catalogue presents in the following section, the considered duration is 
actually around 270 years, while the results here are given for T= 250 years. The particular choice of 
the prior distribution (among Gaussian, lognormal and truncated Gaussian alternates) does not have a 
significant impact on the result in this case. In particular, the estimations of the posterior mean computed 
with the Gaussian and the truncated Gaussian priors are very close. This is because the data has a 
major impact on the posterior. The close agreement of the posterior mean with the known mmax within 
the stated precision implies it is a quite robust estimate, consistent with the results of Jaynes 2007. 

 
 

Study case 2) 

We increase the period of observation. Note that in the application to the French catalogue presents in 
the following section, the considered duration is 266 years. The reference results for T = 266 years are 
given in Table 3 above. Table 6  and Table 7 show the results for T = 500 years and T = 1000 years, 
respectively. 

Considering uncertainty in the magnitude estimates essentially increases the standard deviation of the 
estimate and thus the error. It also increases the estimated mean, which indicates a (conservative) bias 
from above. However, the estimates remain sufficiently accurate in both cases.    

 
Table 6:  Estimated mean and std for true mmax = 6.5, T = 500 years. 
 

 

prior  Trunc. 
normal 

lognormal normal 

mean 6.52 6.52 6.52 

std  0.05 0.05 0.05 
 

prior Trunc. 
normal lognormal normal 

mean 6.59 6.59 6.59 

std 0.10 0.10 0.10 

no uncertainty magnitude uncertainty 
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Table 7:  Estimated mean and std for true mmax = 6.5, T = 1000 years. 
 

 

prior  Trunc. 
normal 

lognormal normal 

mean 6.50 6.50 6.50 

std  0.02 0.02 0.02 
 

prior Trunc. 
normal lognormal normal 

mean 6.60 6.60 6.60 

std 0.07 0.08 0.07 

no uncertainty magnitude uncertainty 

 
 
Table 8: Estimated mean and std for true mmax = 7.0, T = 500 years. 
 

prior  Trunc. 
normal 

lognormal normal 

mean 7.00 7.01 7.01 

std  0.10 0.11 0.11 
 

prior  Trunc. 
normal 

lognormal normal 

mean 7.04 7.05 7.05 

std  0.13 0.14 0.14 
 

no uncertainty with magnitude uncertainty 

 

Table 9: Estimated mean and std for true mmax = 7.0, T = 1000 years. 
  

prior  Trunc. 
normal 

lognormal normal 

mean 6.98 7.01 7.01 

std  0.06 0.06 0.06 
 

prior  Trunc. 
normal 

lognormal normal 

mean 7.07 7.07 7.07 

std  0.10 0.10 0.10 
 

no uncertainty with magnitude uncertainty 

 

The results show that the Bayesian updating provides an accurate estimate of the maximum magnitude 
for observation periods available in France, again assuming the underlying frequency magnitude 
distribution is known. The estimates converge towards the true value if T is increased and if there is no 
uncertainty in the magnitudes. For T=1000 years (Table 7 ), the variability of the estimate is negligible 
(std < 0.03) and the estimated mean is equal to the true value (mmax = 6.5). If uncertainty relative to the 
magnitudes of the catalogue is considered, then there is a bias and the estimated maximum magnitude 
remains larger than the true value. The error (expressed here by the standard deviation) always 
decreases when the period of observation is increased. 

Finally, we check convergence to the exact value for other maximum magnitudes for mmax = 7.0. The 
results are given in Table 8  for T = 500 years and in Table 9 for T = 1000 years. The results confirm the 
previous analyses. 

 

Accounting for observation period dependent magnitu de uncertainty  

The magnitude uncertainty assumed for the historical (not experimental) part of the simulated catalogue 
should be higher than 0.1 in a real case. The value of 0.1 is the std for magnitude uncertainty given in 
the experimental ground motion database RESORCE for French events, and is an absolute minimum 
for estimates from historical data, which may change with time. Accordingly, we introduced a Gaussian 
error term with period of observation dependent std, and considered a moderate uncertainty scenario 
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and a high uncertainty scenario. The period of observation dependent std of the magnitude uncertainty 
are shown in Table 10  for the two cases. 

Table 11  shows the estimated mmax for different true mmax values considering magnitude uncertainty and 
assuming a normal prior distribution. The simulations show that magnitude uncertainty leads to a 
systematic overestimation of mmax. The latter increases if the magnitude uncertainty increases. The 
overestimation of mmax is due to the fact that the observed mmaxobs is generally higher than the “true” 
mmaxobs when magnitude uncertainty is included. This leads to a bias in the estimations. 

This issue can be analyzed with the simulated catalogues by introducing the magnitude uncertainty and 
by comparing the observed mmaxobs to the true mmaxobs (without magnitude uncertainty). The numerical 
analyses showed that the relative bias, that is the observed mmaxobs/true mmaxobs, does not change 
considerably for different true mmax values but it does depend on the degree of magnitude uncertainty. 
The bias becomes more significant when the magnitude uncertainty increases. The simulation shows a 
bias (observed mmaxobs/true mmaxobs) of 2.5% for the moderate uncertainty scenario while it becomes 
4.5% for the high uncertainty scenario. 

An illustration of the origin of the bias is given in Figure 21 (produced with the moderate magnitude 
uncertainty scenario). Obviously, without considering magnitude uncertainty, the mmaxobs value cannot 
exceed the true mmax, which equals 7.0 in this example. However, the observed mmaxobs can be larger 
than the true mmax within its stated error.  Moreover, when the true mmaxobs value is underestimated due 
to uncertainty this does not mean that mmaxobs is underestimated by that same amount because the 
second largest magnitude might be larger and then be considered as mmaxobs. This is why, when 
considering higher magnitude uncertainty, then the observed mmaxobs is generally higher than the true 
mmaxobs which can lead to a considerable overestimation of mmax. This effect is negligible for very small 
magnitude uncertainty, such as for example when considering a std of 0.1 as in the first analyses. 

The impact of the bias in the observed vs the true mmaxobs is illustrated by the results in Table 11  where 
the estimated mmax for the three cases: simulated catalogue without magnitude uncertainty, simulated 
catalogue with period dependent magnitude uncertainty as explained above. The results highlight that 
both the magnitude uncertainty and the bias in the observed mmaxobs have to be accounted for when 
estimating mmax. 

 

Table 10 Std of the Gaussian distribution assumed for modelling magnitude uncertainty and induced 
bias in the observed mmaxobs value. 

 <1900 <1950 <1975 today  
moderate  0.35 0.25 0.2 0.1 

high  0.5 0.35 0.25 0.1 

 

 

Table 11    Estimated mmax.for a true mmax = 7.0 with and without bias correction. The table shows the 
statistics for 1000 simulated catalogues of duration T=250 years considering the moderate and high 
magnitude uncertainty scenarios. 

 No 
uncertainty 

Uncertainty   

  moderate  high  

mean 6.99 7.14 7.28 

std  0.15 0.24 0.30 
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a) b) 

Figure 21:  Illustration of the case where the a) true mmaxobs and the observed mmaxobs do not belong 
to the same event and b) where they do 

 

 

 

Figure 22: Mean and std of the difference between the observed mmaxobs and the true mmaxobs 
estimated from 1000 catalogues. 
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Mmax = 6.5 Mmax = 7.0 

Figure 23: Distribution of the difference between the observed mmaxobs and the true mmaxobs estimated 
from 1000 catalogues for the GR parameters of zone D1 and considering different values of mmax. 

 

 

In order to fully account for the uncertainty in the observed mmaxobs, we develop the distribution of the 
difference between the observed and the true mmaxobs. For this purpose, the high uncertainty scenario of 
Table 10  is adopted. The mean and std of the distribution is evaluated from 1000 simulated catalogues. 
The results for the GR parameters introduced above (French macrozone D1) and considering different 
values of true mmax (not known) are shown in Figure 22 . It turns out that the standard deviation is around 
0.3 and does not depend on the value of mmax while the mean of the difference between the observed 
mmaxobs and the true mmaxobs, that is the bias, depends on the true mmax. Figure 23  shows the detailed 
results (histogram, smoothed distribution and statistics) for the two cases mmax=6.5 and mmax = 7.0. 

Finally, we analyze the impact of parameter uncertainties on the Bayesian updating procedure. We can 
consider uncertainty related to the recurrence parameters a, b, the completeness T and mmaxobs.  

Figure 16  (the two bottom figures) give the standard deviations and correlation coefficients determined 
by GEOTER for the GR law of zone D1. In agreement with these results we use a bivariate Gaussian 
distribution to express the joint law ��V, W� of the two GR parameters. The correlation coefficient 
determined by GEOTER is ρ=0.99 which means a « nearly perfectly correlation » of the two parameters. 
In the light of these results, we assume perfect correlation.  

The two perfectly correlated Gaussian random variables s and  ��#v�v are then expressed as: 

 s � ln�10� W£ < ln�10�H2¤      (29) 

 ��#v�v � V£ < H�¤ 9 	�����W£ < H2¤� � V£ < ����W£ < �H� <����H2�¤      (30) 

Where W£ is the mean estimate of b and H2  is the standard deviation and V£ is the mean estimate of a 
and H�  the standard deviation (all values from Figure 16 ). We adopt a Gaussian distribution for the 
uncertainty related to mmaxobs with mean and std according to the results of Figure 22 . 
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We evaluate the marginal posterior distribution by integrating the parameter uncertainty in the likelihood 
function as: 

�̅�����|�W�� � � �Z��W�|���� , s, �v, ��v��������s, �v,�����2!���p��s��v  (31) ������2!�p 

Z��W�|���� , s, �v� � exp ¦9�vp	§exp�9s����� 9 exp�9s�����2!�exp�9s����� 9 exp�9s����� ¨© 
 

The results with and without considering uncertainty are shown in Table 12 . In particular, we compare 
the ideal case where the magnitudes in the catalogue are perfectly known to the case where the 
magnitudes in the catalogue are not perfectly known. In the latter case, Table 12 shows that the 
introduction of the uncertainty on the parameters and, in particular on mmaxobs, allows us to improve the 
estimations (last column of Table 12 ). The posterior mean is close to the true mmax and the std of the 
estimations (over 1000 catalogues) decreases from 0.28 to 0.16 which is close to the lowest possible 
value obtained with the perfect data.  

 

Table 12   Estimated mmax.for a true mmax = 7.0 with and without improved likelihood function. The table 
shows the statistics for 1000 simulated catalogues considering the moderate and high magnitude 
uncertainty scenarios. 
 

 

 

It has to be pointed out that the issue of magnitude uncertainty is unavoidable, and not specific to the 
new approach presented here (using the likelihood function of equation (26) but it also needs to be 
accounted for in the EPRI updating procedure as well as in any other method where a set of extreme 
magnitudes is considered. In the latter cases, not only the uncertain of the largest observed magnitude 
but the uncertainty of the set of magnitudes has to be accounted for according to their occurrence time.  

In what follows, we apply the EPRI and the new Bayesian updating approach to French data from 
catalogue FCAT17 without considering significant magnitude uncertainty. The issue of larger magnitude 
uncertainty is then addressed in a dedicated analysis. 

 

Analyses with data from FCAT17 catalogue 

The French catalogue Fcat14 is used (Manchuel et al., 2017). The data available for macrozone D1 is 
shown in the Figure 21  below. The largest observed magnitude in the zone D1 is mmaxobs = 6.7. The 
largest event occurred on February 23th in 1887 and is within the completeness period as illustrated in 
Figure 24 . The GR parameters determined by GEOTER are b = 0.79 and a= 4.1. (see Figure 16 ), for 
mmin = 4.5. The completeness periods have been derived previously for mountainous domains in France, 
see Figure 25  and Table 13 . The completeness time period assumed here for mmaxobs starts in the year 
1750. For the EPRI method, N = 137 earthquakes have been retained (CEIDRE-TEGG 2017). The 
truncated Gaussian distribution is chosen as a prior distribution with the parameters developed for the 
macrozone D1 (Ameri et al 2015) and reported above. 

 No 
uncertainty 

Catalogue with 
magnitude 
uncertainty only 

Catalogue with 
magnitude uncertainty  
and improved likelihood 
function 

mean 6.99 7.26 7.02 

std  0.15 0.28 0.16 
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Figure 24: Earthquakes contained in the catalogue corresponding to zone D1. 

 

 

 

 

 

Figure 25:  Regions for the evaluation of completeness periods, from GEOTER (CEIDRE-TEGG 2017) 
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Table 13 Completeness periods determined for mountainous domains (CEIDRE_TEGG 2017) 

 

 

 

 

Figure 26 : Comparison of likelihood functions from the EPRI method (green, N = 137 events) and the 
proposed method (blue, T = 266 years). 

 

 

  

Figure 27 : Comparison of the posterior distributions (solid lines) from the EPRI method (right) and the 
proposed method (left). The prior (dotted lines) is the same in both cases. The Bayes estimator is here 

the posterior mean. 

 



 

Research and Development Program on 
Seismic Ground Motion 

Ref: SIGMA-2-2018-D5-004 

Page 34/45 

 

I. Zentner - Bayesian estimation of the maximum magnitude Mmax based on the statistics of extremes - 

SIGMA-2-2018-D5-004 

Table 14: Statistics of the posterior distribution of ���� 	with and without truncation of the Gaussian prior 
distribution: mean, median and 5%, 95% fractiles 

Method  Mean Median  5% CI 95% 
CI 

T (new approach)  
no truncation  

6,87  
6,88 

6,82 
6,82 

6,71 
6,71 

7,21 
7,24 

N (EPRI) 
no truncation  

6,92 
6,93 

6,86 
6,87 

6,71 
6,71 

7,29 
7,35 

 

Figure 26  compares the likelihood functions corresponding to the EPRI method (green, N = 137 events) 
and the proposed method (blue, T = 266 years) based on the CDF of extremes. As expected, the latter 
likelihood function allows for the introduction of a greater amount of information (completeness of mmaxobs 
instead of the different completeness for the smaller magnitudes) leads to a likelihood more centered 
around the observed mmax. Obviously, the longer the observation, the more likely it is that mmaxobs is the 
true mmax: for an infinite duration, the whole population has been observed and mmaxobs equals mmax.  

Figure 27  compares the posterior distributions obtained with the EPRI method (right figure) and the 
proposed method (left figure). The prior distributions are the same in both cases. The Bayes estimator 
in the figure is the posterior mean. 

The Table 14 summarizes the results by some statistics of the posterior distribution of ���� 	with and 
without truncation of the Gaussian prior distribution. In particular, we compare mean, median and 5%, 
95% confidence intervals (CI) of the updated mmax distribution. The updated mean value of the mmax 
distribution is around Mw = 6.9 for both methods. In agreement with the previous observations regarding 
the likelihood (Figure 26 ), the proposed approach reduces the 95% confidence interval of the posterior 
distribution. The truncated prior and the untruncated prior distributions provide very similar results which 
suggests that the latter can be used. 

 

Accounting for uncertainty in the data from FCAT17 catalogue 

 

a) Uncertainty of recurrence parameters and complet eness 

We consider uncertainty on the recurrence parameters according to the joint distribution given by 
equations (30) and (31).  We furthermore assume a uniform distribution for the duration of completeness 
T, with the interval p£ ª 50	years. 
Figure 28  compares the likelihood functions from the EPRI method (N = 137 events) and the proposed 
method with and without considering the uncertainties. The likelihood function with uncertainties on GR 
parameters and completeness shown in the figure is the “marginal” likelihood calculated as: 

Z��W�|����� � �Z��W�|���� , s, �v, p���p���s, �v��p�s��v   (32) 

The results show that the uncertainty has no considerable difference in the mean likelihood and thus 
the resulting posterior distribution. 
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Figure 28 : Comparison of likelihood functions from the EPRI method (green, N = 137 events) and the 
proposed method with (marginal distribution, magenta) and without (blue) uncertainties on GR 

parameters and duration. 

 

 

 

Figure 29: Illustration of likelihood functions obtained when accounting for uncertainty in 
completeness and b-value. 
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Figure 30 : Histogram of sample of 95% confidence value of mmax obtained by sampling the uncertain 
GR b-parameter and the completeness duration T. This gives a coefficient of variation of COV = 1.5% 

and Mean = 7.17. 

 

Secondly, we propagate uncertainty by Monte Carlo simulation using Latin Hypercube Sampling (LHS) 
technique. Figure 29 illustrates the variability of the likelihood functions obtained when considering 
variations in completeness and b-value.  Only part pf the whole set of likelihood functions used in the 
Monte Carlo simulation is shown to keep the figure comprehensive. Figure 30  shows the histogram of 
the resulting sample of the 95% confidence value of mmax obtained by sampling the uncertain 
parameters. The coefficient of variation, defined as the ratio between the standard deviation and mean, 
is COV = 1.5% for a mean value (of the 95% confidence mmax) of Mw = 7.17 and mode (peak of the 
posterior distribution) of around Mw = 7.2. We recall here that the 95% value was Mw = 7.21 in the 
previous analyses without parameter uncertainty, as reported in Table 11 . The coefficient of variation is 
very low (1.5%) and indicates that results are robust with respect to uncertainties. However, in the PSHA, 
the epistemic parameters uncertainty could be considered through the std of the posterior distribution. 

 

b) Uncertainty related recurrence parameters and m maxobs  
 

We consider the uncertainties related to the GR parameters as described before and a Gaussian error 
term for mmaxobs with a std = 0.2. Possible correlation between the GR parameters and mmaxobs has been 
neglected at this stage since no information was available. 

Figure 31  compares the likelihood functions from the EPRI method (N = 137 events) and the proposed 
method with and without considering the latter uncertainties. The likelihood function with uncertainties 
on GR parameters and mmaxobs shown Figure 30  is the “marginal” likelihood calculated as: 

Z��W�|����� � �Z��W�|���� , s, �v, ���s, �v,�����2!��	�����2! 	�s��v   (33) 

The figure shows that the uncertainty enlarges the peak of the likelihood function and makes it less 
sharp around mmaxobs. The uncertainty related to mmaxobs (the true mmaxobs could be smaller or larger than 
the observed mmaxobs) also implies that mmax could also be smaller than the value in the catalogue. 
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Figure 31 : Comparison of likelihood functions from the EPRI method (green, N = 137 events) and the 
proposed method without (blue) and with (marginal distribution, magenta) uncertainties on GR 

parameters and mmaxobs. 

 
 

 

 

  

Figure 32 : Comparison of the posterior distributions (solid lines) with (right) and without (left) 
considering uncertainty in the likelihood function. The prior (dotted lines) is the same in both cases. 

The Bayes estimator is here the posterior mean. 
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Table 15: Statistics of the posterior distribution of ���� 	with and without considering uncertainties on 
GR parameters and mmaxobs for truncated and not truncated Gaussian prior distribution: mean, median 
and 5%, 95% fractiles. 

Method  Mean Median  5% CI 95% CI 

No uncertainties  
no truncation 

6,87  
6,88 

6,82 
6,82 

6,71 
6,71 

7,21 
7,24 

With uncertainties  
(mean and std) 
no truncation 

6.72 
6.74 

6.71 
6.71 

6.26 
6.26 

7. 23 
7.27 

 

The Table 15 shows the same results as Table 14 but now the cases where the likelihood function is 
computed with and without considering uncertainty, and are then compared. The truncated prior and the 
untruncated prior distributions provide again very similar results. The value mmax has to be known in 
order to pick the correct mean value in Figure 22 , but in a realistic case it is not known from the 
beginning. An iterative procedure is used where the initial value for the mean of the distribution (bias) is 
chosen according to the results without considering uncertainty. It is then updated to be in agreement 
with the new estimation of mmax. Figure 32  compares the posterior distributions obtained with (right 
figure) and without (left figure) considering uncertainties in the proposed method. The prior distributions 
are the same in both cases. The Bayes estimator in the figure is the posterior mean. The left curves are 
the same as the ones shown on the left of Figure 27 . 

The results highlight that the uncertainty on mmaxobs and the GR parameters can be integrated in the 
updating procedure in a straightforward way. The simulated catalogues allowed for evaluating the bias 
(mean) and the std of the distribution of the difference between the true and the observed mmaxobs.  

For simplicity’s sake, we have assumed a Gaussian distribution to represent uncertainty related to 
mmaxobs. Figure suggests that the distribution is not perfectly symmetric and that another distribution 
might be more accurate. This topic could not be fully addressed here and will be the object of further 
improvements of the approach. 

 

5. Conclusion and Perspectives 
 

The most commonly used recurrence model is the GR law assuming Poissonian occurrence of 
earthquakes. In this framework, the maximum magnitude mmax as well as its probability distribution 
(epistemic uncertainty) can be estimated by Bayesian updating using the analytical expressions of the 
extreme value distribution. The approach remains applicable when other distributions than the GR law 
are assumed since the analytical expressions can be derived for any distribution as long as Poisson 
occurrence is assumed. In the Bayesian approach, the information from similar tectonic zones and 
expert judgment is introduced by a prior distribution of the maximum magnitude. 

We have proposed a new method that combines the distribution of extreme values of the truncated GR 
law with the Bayesian updating approach. The method constitutes an improvement of former 
developments by EPRI, see Johnston (1994), and further promoted by USNRC (2012).  Indeed, the 
duration-based formulation of the likelihood proposed here performs slightly better than the EPRI 
approach because the completeness period of mmaxobs is longer than for mmin. Regarding the time 
intervals used for the derivation of the extreme value distribution, the analyses showed that the same 
result is obtained when considering a set of time intervals and their maximum magnitudes or when 
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considering only one time interval and the associated maximum. As for the EPRI method, the approach 
also allows addressing the case where mmaxobs outside its completeness interval. The analyses 
conducted in this report with simulated catalogues demonstrated the capability of the Bayesian updating 
approach to correctly estimate mmax. The proposed method is more rigorous and outperforms the EPRI/ 
USNRC Bayesian updating approach. Only the completeness period of mmaxobs is required, so that there 
is no need to determine and use the exact completeness periods for magnitude bins of smaller events 
and to introduce the associated uncertainties. This makes the approach easy to implement and to apply. 
Eventually, simulated catalogues demonstrate the possibility to estimate mmax with the proposed method 
and for periods of observation available in France.   

For the simulated catalogues, magnitude uncertainty has been considered assuming small, moderate 
and high uncertainty scenarios. The smallest std of 0.1 corresponds to the magnitude uncertainty 
indicated in the experimental ground motion database RESORCE. The uncertainty related to the more 
ancient earthquakes is (unavoidably) much higher. According to FCAT17, large uncertainties with 
standard deviations of up to around 0.5 are present in the historical part of the catalogue. The analyses 
with the simulated catalogues highlighted and explained the bias in the estimations introduced by the 
magnitude uncertainty (mmax is overestimated in the mean). This issue has been addressed by 
developing a new likelihood function accounting for uncertainty related to the GR parameters as well as 
the maximum observed magnitude. By this approach, the uncertainty on mmaxobs and the GR parameters 
could be integrated in the updating procedure in a straightforward way. The simulated catalogues 
allowed for evaluating the bias (mean) and the std of the distribution of the difference between the true 
and the observed mmaxobs.  

In the present work, the catalogues are simulated using the truncated GR law which can be considered 
as a favorable case. Indeed, the true distribution of magnitudes is not known and might differ from this 
model. Even if the distribution of magnitudes is well represented by the GR law, it is clear that this is 
only an approximation of the real law. The robustness of the methodology could be assessed by 
simulating catalogues with other plausible distributions. This will be addressed in a further work. 

The direct estimation of the maximum magnitude by the asymptotic GEV and GPD distributions without 
hypothesis on the model avoids any further model assumption but comes at the cost of more data to 
obtain the same precision. Moreover, the resulting estimates might not in agreement with the 
subsequent engineering analyses if the truncated GR model is used in the PSHA software. 

Further developments concern the analyses of alternative magnitude frequency distributions that might 
be in better agreement with data and/or less sensitive to mmax. The results were insensitive to the choice 
of prior distribution, but it is important to pay further attention to the development of the prior and to 
conduct further sensitivity analyses. It was not possible in the framework of this study to determine the 
completeness periods of mmaxobs for all macrozones. This, and the application to other macrozones, will 
be the object of an update of this report. 
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APPENDIX 1 

Visualization of the data from all 6 macrozones. 
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Figure A1 : From left top to right bottom: data from macrozone D1 to D6, the red vertical lines show 
the approximate intervals of completeness for mmaxobs that can be considered for the updating. 
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APPENDIX 2 
 

GR law in log10 base 

The Gutenberg-Richter law (1944) represents the annual number of earthquakes larger than a 
magnitude m. The relation initially proposed by the authors in base log10 reads: 

log#v ��� 	 �� � V 9 W�      

With constants a (global rate of earthquakes in the considered region) and b (ratio between earthquakes 
with large and small magnitude, typical values are close to 1). For simplicity’s sake, we write �� � ��� 	��. This allows for expressing the cumulative distribution function of earthquakes with magnitude larger 
than ���� as: '0��� � 1 9 1012��1����� for � 	 ���� such that the distribution of magnitudes reads: 

�0��� � W	 Y�10�	1012��1�����  for m>mmin. 

Introducing an upper magnitude mmax, we have 	'���� � k����1k�k����1k���� and the distribution of magnitudes 

reads: 

�0��� � 2	°��#v�	#vz±��z�|}~�#1#vz±�����z�����    for  mmin<m<mmax. 

With V� � 6�°���� we can write ��� 	 �� � 10�12� � 6��12��²³	�#v� such that ��� 	 �� � 6u1w� with s � W	 Y�10� and r � V	 Y�10�.  


