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Summary 
 
 
 
The goal of the task X2-4 of work package 2 is to select and rank ground-motion prediction 
equations (GMPEs) for seismic hazard assessment (SHA) in France and surroundings countries. It 
is needed to establish a logic tree for ground motion prediction that captures well epistemic 
uncertainty. A two years post-doc is dedicated to this task that involves three steps: the collection of 
data, the pre-selection of candidate GMPEs and the testing of the GMPEs using data driven 
methods. 
 
The question associated with this task is the following: which GMPEs are appropriate in a specific 
region (selection) and with which degree of appropriateness (ranking)? This question is particularly 
critical in low seismicity regions such as France or Switzerland that do not have any indigenous 
strong motion prediction equation because of a lack of data. Moreover, many studies have identified 
a magnitude scaling of ground motion (stronger decrease at large magnitudes than at low 
magnitudes) that prevents to use GMPEs based on weak motion to predict strong motion (e.g., 
Bommer et al., 2007, Cotton et al., 2008). In this context, we search which GMPEs derived for 
other regions can be applied to predict ground motion in France, and for which ranges in magnitude, 
distance and response spectrum period, having in mind that the whole magnitude range (from 
magnitude 4) has a contribution to the hazard in these regions. 
 
 
1. Data 
 
As a first step, we use data from the French Accelerometric Network (RAP) recorded between 1995 
and 2007 (Péquegnat et al., 2008). The maximum available magnitude is 4.6. The minimum 
magnitude we considered is 3.8 in order to limit the extrapolation of the GMPEs outside their 
magnitude validity range while having a sufficient amount of data to perform a robust GMPE 
testing. The response spectra have been visually checked. Records with the three components and a 
good signal to noise ratio were selected. Table 1 summarizes the characteristics of the 18 events 
used in the present study. They are also provided in an excel file (eventmetadata_RAP.xls).  
 
For each event, the necessary metadata are: the moment magnitude, the focal mechanism, the 
location and the depth. Concerning the values assigned to these metadata, we decided to follow the 
criteria of Beauval et al. (2012) who worked on the testing of ground-motion prediction equations 
against small magnitude data. 
 

• Moment magnitudes have been extracted from the catalogue of magnitude available on the 
RAP website (http://www-rap.obs.ujf-grenoble.fr/spip.php?article38). 
Moment magnitudes have been determined by Drouet et al. (2010) using an inversion 
scheme. Four of them were extracted from Beauval et al. (2012) who applied a magnitude 
conversion equation from local magnitudes determined by the "Réseau National de 
Surveillance Sismique" (RéNaSS: http://renass.u-strasbg.fr/) magnitude to 
moment magnitude.  
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• The focal mechanism is known only for 10 events. They have been extracted from Beauval 
et al. (2012). As magnitudes are small, the focal mechanism does not have a significant 
impact on the GMPEs prediction. In practice, the focal mechanism has been set to "reverse" 
for the events with an undefined focal mechanism. Another solution could have been 
chosen, used by Delavaud et al. (2012a). They computed predictions for each of the three 
possible mechanisms (reverse, normal and strike-slip) and determined the LLH value as the 
weighted mean of the three obtained LLH values. The weights can be estimated from the 
known proportion of each mechanism in the region of interest. 

 
• Depth is a parameter that might have more impact on the GMPEs predictions as it directly 

influences the source-to-site distances. Depths have been extracted from the catalogue of 
magnitude available on the RAP website (http://www-rap.obs.ujf-
grenoble.fr/spip.php?article38). 

 
• Some GMPEs require additional metadata: the depth to top of rupture and the depth to a 

shear wave velocity of 2.5km/s (Abrahamson and Silva, 2008) or 1km/s (Chiou and Youngs, 
2008) to take a basin effect into account. As we considered only small events, we set the 
depth to top of rupture equal to the hypocenter depth. The basin effect was not taken into 
account due to a large uncertainty of the associated parameters. The down dip rupture width 
required by some NGA models was determined using the relation of Wells and Coppersmith 
(1994). 

 
 
For each record, the necessary metadata are: the location, the hypocentral and epicentral source-to-
site distances and a Vs30 (shear velocity averaged over the upper 30 m) estimate. These metadata 
are provided in an excel file (obsmetadata_RAP.xls). 
 

• As the magnitudes are small (<=4.6), the Joyner-Boore and rupture source-to-site distances 
are supposed to be equal to the epicentral and hypocentral distances respectively. 
Hypocentral distances up to 300km are considered.  

 
• Both Vs30 estimates and EC8 classes are available for the RAP stations together with 

confidence levels (http://www-rap.obs.ujf-grenoble.fr/IMG/txt/RAP2010-
fiches_RAP-V1.txt). We used Vs30 values with a "medium" to "high" confidence level. 
For a lower Vs30 quality, a mean value corresponding to the EC8 class is used: 1000m/s for 
"A" EC8 class, 600m/s for "B", 250m/s for "C" and 100m/s for "D, as Beauval et al. (2012) 
did. 

 
• Some GMPEs need additional information about each site: whether it is located on a 

hanging wall region or not and how the associated Vs30 has been determined. We did not 
take the hanging wall effect into account, as the events are small. We set the Vs30 
determination to "estimated" for all Vs30s due to the associated uncertainties. It has an 
influence on the standard variation of the GMPE's prediction. The missing parameters 
required by the NGA models can be also estimated according to Kaklamanos et al. (2010). 

 
The dataset obtained is very similar to the one used in Beauval et al. (2012) to test GMPEs against 
small magnitude French data. The main difference resides in the events considered: their dataset 
does not contain 3 of our events (on the 22.02.03, the 05.12.04 and the 02.09.06) and they 
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considered an event that our dataset does not includes, the event on the 25.02.01. For some common 
events, the number of observations is not the same. 
 
Our dataset is composed of 18 earthquakes with 182 observations for response spectra ranging from 
0.2Hz to 10Hz. A good homogeneity in terms of magnitude and distance is obtained, as shown in 
Figure 1. The location of the events and stations are shown in Figure 2. The events are located in 
the Pyrenees, Alps and Lower Rhine Embayment that have been considered as active shallow 
crustal regions by Delavaud et al. (2012b). 
 
The influence of the uncertainties associated with the events and observations metadata on the 
ranking results will be addressed in another section. This concerns the moment magnitude, the 
mechanism and the depth of the hypocenter. 
 
 
 

Table 1: Characteristics of the 18 events used for the GMPEs testing 

 * Calculated using the magnitude conversion Mw = f (M L_Renass)  
Mechanism U stands for undefined. In practice, we used a reverse mechanism when unknown. 
 
 
 
 

Event date Mag. (Mw) Mechani
sm 

Longitude (°) Latitude (°) Depth (km) Number of obs. 

31-10-1997 4.0  U  6.57 44.26 2 5 
21-08-2000 4.4* SS 8.44 44.86 10 10 
16-05-2002 4.0 R -0.16 42.94 10 9 
11-12-2002 3.8 U -0.33 43.04 5 5 
12-12-2002 4.0 U -0.28 43.11 10 9 
21-01-2003 3.8 U -0.36 43.05 10 12 
22-02-2003 4.5 N 6.66 48.31 10 10 
22-03-2003 3.9 U 8.91 48.19 5 3 
11-04-2003 4.3* SS 8.83 44.87 5 22 
23-02-2004 4.2 SS 6.28 47.30 10 15 
18-09-2004 4.6 N -1.6 42.78 2 9 
30-09-2004 4.1 N -1.45 42.77 10 8 
05-12-2004 4.1 U 8.0 48.11 10 1 
08-09-2005 4.4 SS 6.87 46.01 10 17 
02-09-2006 3.8 U 7.59 43.92 10 11 
17-11-2006 4.5 N 0.01 43.08 11 18 
30-07-2007 4.0* U 9.71 44.92 10 4 
15-11-2007 4.0* N 0.0 43.01 8 14 
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Figure 1: Distance - magnitude distribution of the French Accelerometric Network (RAP) data used 
for this study. 
 
 
 

 
Figure 2: Epicenters (in red) of the earthquakes considered in this study and stations (in black) of 
the French Accelerometric Network where observations were recorded. Some events are on 
Germany, Italy and Spain. 
 
 
 
2. Pre-selection of GMPEs 
 
20 GMPEs have been pre-selected. Their characteristics are summarized in Table 2.  
 
14 of them are developed for active shallow crustal regions (ASCR) (in red, blue and green in Table 
2). Their datasets are composed of data from California, Europe and Middle East, Japan, Turkey, 
Italy or Spain (see last column of Table 2). In order to better capture epistemic uncertainties, 8 
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GMPEs derived for stable continental regions (SCR) are also considered. Most of them (6) are 
based on data from Eastern North America.  
 
The report SIGMA WP2 D2.5 presents these GMPEs in details. Here are characteristics that 
particularly interest us: 
 

• The models of Boore and Atkinson (2011), Atkinson (2011) and Atkinson and Boore 
(2011a) are revisions of the models of Boore and Atkinson (2008), Atkinson (2008) and 
Atkinson and Boore (2006) respectively following Atkinson and Boore (2011b). These 
revisions are simple modifications to take into account new data available for magnitudes 
below 5.75. 

 
• Only 3 of the selected GMPEs are able to predict ground motion for magnitudes below 4: 

Atkinson and Boore (2011) [min Mw = 3.5], Akkar and Cagnan [min Mw = 3.5] and  
Bommer et al. (2007) [min Mw = 3]. These names are highlighted in Table 2. 

 
• All the SCR GMPEs as well as the models of Zhao et al. (2006), Berge-Thierry et al. (2006) 

and Kanno et al. (2006) are valid for distances up to 300 km.  
 

• All GMPEs are valid for frequencies up to 10Hz while large differences exist for the 
minimum response spectra frequency. 12 GMPEs are valid for frequencies down to 0.2Hz. 
Predictions will be calculated while respecting the GMPEs frequency validity. We will not 
extrapolate in the frequency domain. 

 
• GMPEs are not adjusted but adjustments will be done in the next weeks, especially for the 

rock definition for the SCR GMPEs.  
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Table 2: Characteristics of the 20 candidate GMPEs  

 
ENA: Eastern North America; EME: Europe and Middle East 
RRUP: Rupture distance; RJB: Joyner-Boore distance; RHYP: hypocentral distance 
 
Options selected for the following models: 
For Raghu Kanth and Iyengar (2007): Peninsular India region 
For Silva et al. (2002): Double corner source model 
For Somerville et al. (2009): Non-cratonic region 
For Chiou et al. (2010): Central California 
 
 
3. Testing based on the LLH method   
 
 
The LLH method 
 
The pre-selected GMPEs are tested against the RAP data presented in Section 1. The goal of this 
testing is to judge the applicability of candidate models by evaluating their probability to have 
generated the available data. We use the data-driven method developed by Scherbaum et al. (2009) 
that implemented an information-theoretic approach for the selection and the ranking of GMPEs. 
The method derives a ranking criterion from the Kullback-Leibler (KL) divergence, which denotes 
the information loss when a model 

6 E. Delavaud et al.

ical data from Europe. Due to this particular reason,
the experts preferred choosing the global SZ models
that cover a wide range of magnitude and distance in-
tervals. Only one expert considered interface and in-
slab models separately in ranking whereas three ex-
perts considered the spectral period ranges while as-
signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
one model was selected by all the experts, the model
of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
judgment. Regional ASCR models (e.g., Massa et al.,
2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
ered magnitude-distance-frequency ranges while assign-
ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.

4 Data Testing

To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1

N

N�

i=1

log2 (g(xi)) (2)

where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:

DSIi = 100
wi − wunif

wunif
, (3)

where

wi =
2−LLH(gi,x)

�K
k=1 2

−LLH(gk,x)
(4)

This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and

 defined as a distribution is used to approximate a reference 
model 
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vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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ical data from Europe. Due to this particular reason,
the experts preferred choosing the global SZ models
that cover a wide range of magnitude and distance in-
tervals. Only one expert considered interface and in-
slab models separately in ranking whereas three ex-
perts considered the spectral period ranges while as-
signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
one model was selected by all the experts, the model
of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
judgment. Regional ASCR models (e.g., Massa et al.,
2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
ered magnitude-distance-frequency ranges while assign-
ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.

4 Data Testing

To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1

N

N�

i=1

log2 (g(xi)) (2)

where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:

DSIi = 100
wi − wunif

wunif
, (3)

where

wi =
2−LLH(gi,x)

�K
k=1 2

−LLH(gk,x)
(4)

This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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ical data from Europe. Due to this particular reason,
the experts preferred choosing the global SZ models
that cover a wide range of magnitude and distance in-
tervals. Only one expert considered interface and in-
slab models separately in ranking whereas three ex-
perts considered the spectral period ranges while as-
signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
one model was selected by all the experts, the model
of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
judgment. Regional ASCR models (e.g., Massa et al.,
2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
ered magnitude-distance-frequency ranges while assign-
ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.
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To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:
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, (3)

where

wi =
2−LLH(gi,x)

�K
k=1 2

−LLH(gk,x)
(4)

This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
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GMPE reference GMPE 
Acronym 

Magnitude 
range (Mw) 

Distance range 
(km) and type 

Frequency range 
(Hz) 

Main region of 
the generating 

dataset 
Campbell (2003) Ca03 5.0 - 8.2 0 - 1000 (RRUP) 0.25 - 50 ENA 
Toro (2002) To02 5.0 - 8.0 0 - 1000 (RJB) 0.5 - 33.3 ENA 
Atkinson and Boore (2011a) AB11 3.5 - 8.0 0 - 1000 (RRUP) 0.2 - 40.0 ENA 
Atkinson (2011) At11 4.3 - 7.6 10 - 1000 (RJB) 0.2 - 10.0 ENA 
Pezeshk et al. (2011) Pe11 5.0 - 8.0 0 - 1000 (RRUP) 0.1 - 100 ENA 
Raghu Kanth and Iyengar (2007) RKI07 4.0 - 8.0 5 - 300 (RHYP) 0.25 - 100 India 
Silva et al. (2002) Si02 4.5 - 8.5 1 - 400 (RJB) 0.1 - 100 ENA 
Somerville et al. (2009) So09 5.0 - 7.5 1 - 500 (RJB)  0.1 - 100 Australia 
Akkar and Bommer (2010) AB10 5.0 - 7.6 0 - 99 (RJB) 0.33 - 20 EME 
Berge-Thierry et al. (2003) Be03 4.0 - 7.9 4 - 330 (RHYP) 0.1 - 34 EME 
Bommer et al. (2007) Bo07 3.0 - 7.6 0 - 100 (RJB) 2 - 100 EME 
Bindi et al. (2009) Bi09 4.0 - 6.9 2.8 - 100 ( RJB) 0.5 - 33.3 Italy 
Douglas et al. (2006) Spain DoS06 4.5 - 7.5 1 - 1000 ( RJB) 0.5 - 50 Southern Spain 
Akkar and Cagnan (2010) AC10 3.5 - 7.6 1 - 200 (RJB) 0.5 - 33.3 Turkey 
Abrahamson and Silva (2008) AS08 5.0 - 8.0 0 - 200 (RRUP) 0.1 - 100 California 
Boore and Atkinson (2011) BA11 5.0 - 8.0 0 - 200 (RJB) 0.1 - 100 California 
Chiou and Youngs (2008) CY08 4.0 - 8.0 0.2 - 200 (RRUP) 0.1 - 100 California 
Kanno et al. (2006) Ka06 5.2 - 8.2 1 - 300 ( RRUP) 0.2 - 20 Japan 
Zhao et al. (2006) Zh06 5.0 - 8.3 0 - 300 (RRUP) 0.2 - 20 Japan 
Faccioli et al. (2010) Fa10 5.0 - 7.2 10 - 150 (RRUP) 0.05 - 20 Japan 
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ical data from Europe. Due to this particular reason,
the experts preferred choosing the global SZ models
that cover a wide range of magnitude and distance in-
tervals. Only one expert considered interface and in-
slab models separately in ranking whereas three ex-
perts considered the spectral period ranges while as-
signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
one model was selected by all the experts, the model
of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
judgment. Regional ASCR models (e.g., Massa et al.,
2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
ered magnitude-distance-frequency ranges while assign-
ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.

4 Data Testing

To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1

N

N�

i=1

log2 (g(xi)) (2)

where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:

DSIi = 100
wi − wunif

wunif
, (3)

where

wi =
2−LLH(gi,x)

�K
k=1 2

−LLH(gk,x)
(4)

This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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ical data from Europe. Due to this particular reason,
the experts preferred choosing the global SZ models
that cover a wide range of magnitude and distance in-
tervals. Only one expert considered interface and in-
slab models separately in ranking whereas three ex-
perts considered the spectral period ranges while as-
signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
one model was selected by all the experts, the model
of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
judgment. Regional ASCR models (e.g., Massa et al.,
2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
ered magnitude-distance-frequency ranges while assign-
ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.

4 Data Testing

To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1

N

N�

i=1

log2 (g(xi)) (2)

where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:

DSIi = 100
wi − wunif

wunif
, (3)

where

wi =
2−LLH(gi,x)

�K
k=1 2

−LLH(gk,x)
(4)

This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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ical data from Europe. Due to this particular reason,
the experts preferred choosing the global SZ models
that cover a wide range of magnitude and distance in-
tervals. Only one expert considered interface and in-
slab models separately in ranking whereas three ex-
perts considered the spectral period ranges while as-
signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
one model was selected by all the experts, the model
of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
judgment. Regional ASCR models (e.g., Massa et al.,
2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
ered magnitude-distance-frequency ranges while assign-
ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.

4 Data Testing

To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1
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log2 (g(xi)) (2)

where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:

DSIi = 100
wi − wunif

wunif
, (3)

where

wi =
2−LLH(gi,x)
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−LLH(gk,x)
(4)

This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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ical data from Europe. Due to this particular reason,
the experts preferred choosing the global SZ models
that cover a wide range of magnitude and distance in-
tervals. Only one expert considered interface and in-
slab models separately in ranking whereas three ex-
perts considered the spectral period ranges while as-
signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
one model was selected by all the experts, the model
of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
judgment. Regional ASCR models (e.g., Massa et al.,
2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
ered magnitude-distance-frequency ranges while assign-
ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.

4 Data Testing

To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:

DSIi = 100
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wunif
, (3)

where
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(4)

This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:

DSIi = 100
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where
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This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and

 has 
produced the observation 

6 E. Delavaud et al.
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signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
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of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
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2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
ered magnitude-distance-frequency ranges while assign-
ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.
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To complement the expert opinions described above,
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was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
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The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,
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defined by:
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
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where
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This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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tervals. Only one expert considered interface and in-
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perts considered the spectral period ranges while as-
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PEs among the eight models proposed for SZ. Only
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by Akkar and Bommer (2010) and of Boore and Atkin-
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experts. Tables 8, 9 and10 summarize the choice of each
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was undertaken. The goal of this phase was to judge the
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probability to have generated the available data. We
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The method derived a ranking criterion from the Kull-
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is used to approximate a reference model f (Burnham
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models represented by their probability density func-
tions f and g is defined as:
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where Ef is the statistical expectation taken with re-
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data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
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where

wi =
2−LLH(gi,x)

�K
k=1 2

−LLH(gk,x)
(4)

This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
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2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
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ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.
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To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
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This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
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To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
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The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,
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defined by:
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
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This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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that cover a wide range of magnitude and distance in-
tervals. Only one expert considered interface and in-
slab models separately in ranking whereas three ex-
perts considered the spectral period ranges while as-
signing weights. The experts selected two to five GM-
PEs among the eight models proposed for SZ. Only
one model was selected by all the experts, the model
of Atkinson and Boore (2003). Contrary to the SCR
and SZ regions, the excessive number of GMPEs for
the shallow crustal active regions challenged the expert
judgment. Regional ASCR models (e.g., Massa et al.,
2008; Kalkan and Gülkan, 2004; Danciu and Tselentis,
2008) were either excluded or given small weights (less
than 0.1). The expert choices lean towards global and
pan-European models in the ranking of ASCR GMPEs.
Of the entire expert group only two of them consid-
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ing weights. The experts selected between three to ten
GMPEs among the 18 candidate models. The GMPEs
by Akkar and Bommer (2010) and of Boore and Atkin-
son (2008) were the commonly selected models by all
experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
Category based on expert judgment.

4 Data Testing

To complement the expert opinions described above,
testing of the candidate GMPEs against empirical data
was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
used the data-driven method developed by Scherbaum
et al. (2009) that implemented an information-theoretic
approach for the selection and the ranking of GMPEs.
The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
mation loss when a model g defined as a distribution
is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
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the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
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In order to interpret the rankings, weights obtained
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Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
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ues are independently determined for each model (Kol-
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tive exhaustiveness are not respected) and only sub-
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and SZ regions, the excessive number of GMPEs for
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experts. Tables 8, 9 and10 summarize the choice of each
expert for the three tectonic regimes under the section
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was undertaken. The goal of this phase was to judge the
applicability of candidate models by evaluating their
probability to have generated the available data. We
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The method derived a ranking criterion from the Kull-
back-Leibler (KL) divergence, which denotes the infor-
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is used to approximate a reference model f (Burnham
and Anderson, 2002). The KL divergence between two
models represented by their probability density func-
tions f and g is defined as:

D(f, g) = Ef [log2(f)]− Ef [log2(g)] (1)

where Ef is the statistical expectation taken with re-
spect to f .

In the case of GMPE selection, f represents the
data-generating process (nature) and is only known through
observations. Consequently, the term Ef [log2(f)] called
the self-information of f cannot be calculated. However,

the second term, −Ef [log2(g)], can still be approxi-
mated via the observations. This approximation is the
negative average sample log-likelihood, noted LLH and
defined by:

LLH(g,x) := − 1
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where x = {xi},i = 1, ..., N are the empirical data and
g(xi) is the likelihood that model g has produced the
observation xi. In the case of GMPE selection, g is the
probability density function given by a GMPE to pre-
dict the observation produced by an earthquake defined
by a magnitude M (and by other characteristics such
as the style of faulting) at a site i that is located at a
distance R from the source.

We used the LLH divergence as a criterion to rank
the candidate GMPEs. Due to its negative sign, the
negative average sample log-likelihood is not a measure
of closeness but a measure of the distance between a
model and the data-generating process. A small LLH
indicates that the candidate model is close to the pro-
cess that has generated the data while a large LLH
corresponds to a model that is less likely of having gen-
erated the data.

In order to interpret the rankings, weights obtained
from the LLH values were compared to the uniform
weight wunif = 1

M , where M is the number of GM-
PEs. This comparison tells us to what degree the data
support or reject a model with respect to the state of
non-informativeness. It is expressed by the data sup-
port index (DSI) which gives the percentage by which
the weight of a model is increased (positive DSI) or de-
creased (negative DSI) by data. The DSI of model gi
with LLH-value based weight wi is:

DSIi = 100
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where
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This ranking method has been recently used by
Delavaud et al. (2012) to test the global applicability of
GMPEs for active shallow crustal regions. The LLH di-
vergence was computed for eleven GMPEs for different
regions and magnitude and distance ranges to assess
their validity domain.

The LLH-based weights defined by eq. (4) cannot be
automatically regarded as probabilities as the LLH val-
ues are independently determined for each model (Kol-
mogorovs axioms of mutual exclusiveness and collec-
tive exhaustiveness are not respected) and only sub-
sequently made to sum up to one (see Scherbaum and
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 is not known, some confidence interval of LLH can be 
identified in practice. (Beauval et al., 2012) made synthetic tests to better interpret the LLH 
absolute values. These tests show that if testing the distribution that simulated the dataset with this 
same dataset, mean LLH values obtained are close to 1.4-1.5. Then, if testing distributions that 
differ from the original one, mean LLH are increasing. For a distribution with a mean equal to the 
original mean plus one sigma, and a sigma twice the original sigma, LLH values are around 2.0. In 
the worst case considered in their example, the tested distribution has a mean equal to the original 
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mean plus 2.5 sigma, and a sigma equal to 0.8 times the original sigma, producing mean LLH 
values as high as 9-10.  
 
The LLH-based weights defined by eq. (4) cannot be automatically regarded as probabilities as the 
LLH values are independently determined for each model (Kolmogorov’s axioms of mutual 
exclusiveness and collective exhaustiveness are not respected) and only subsequently made to sum 
up to one (see Scherbaum and Kuehn (2011) for more details about this subject). Therefore, we 
advise not to directly use them as logic tree weights but to use them in combination with expert 
judgment. The purpose of using empirical data was not to replace expert judgment but rather to help 
the judgment process by providing additional information about the applicability of GMPEs, 
especially in regions where no indigenous model exists. 
 
We refer to Scherbaum et al. (2009) for a theoretical description of the method and to Delavaud et 
al. (2012a), Delavaud et al. (2012b) and Beauval et al. (2012) for applications of the method. 
 
 
4. Results 
 
We compute LLH values for a set of frequencies that respects the frequency validity of each GMPE 
(5th column in Table 2). The larger set of frequencies is: 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 3, 4, 6, 8 and 10 
Hz. On contrary, we allow extrapolations in magnitudes and distances. The moment magnitude 
range is 3.8 to 4.6. The distance range is 0 to 300 km.  
 
Extrapolations outside the validity range of GMPEs in terms of magnitudes and distances are not 
recommended (Bommer et al., 2007) but they can still be performed. It is an extrapolation in the 
functional form that can be appropriate if the functional form is robust and physical enough 
(Delavaud et al. (2012a) found that the model of Akkar and Bommer could be successfully 
extrapolated at larger distances). However, extrapolation in frequency should be excluded. To each 
spectral frequency predicted are associated coefficients that have been determined by regression. 
Such coefficients cannot be extrapolated for an other spectral frequency. 
 
First, we show that we obtain consistent results with the study of Beauval et al. (2012). Figure 3 
shows the LLH values in function of the frequency for the GMPEs selected by Beauval et al. 
(2012): Akkar and Bommer (2010), Cauzzi and Faccioli (2008), Chiou et al. (2010), Abrahamson 
and Silva (2008), Bindi et al. (2009), Zhao et al. (2006), Boore and Atkinson (2011) and Chiou and 
Youngs (2008). 
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Figure 3: LLH values in function of frequency for the GMPEs selected by Beauval et al. (2012). 
Acronyms are given in Table 2. 
 
 
Figures 4 shows the LLH values in function of frequency for the GMPEs that obtain the lowest 
LLH values for almost all frequencies. Figure 5 shows the corresponding DSI graph. Figure 6 
shows the same graph for the GMPEs that obtain higher LLH values. Figure 7 shows the 
corresponding DSI graph. 
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Figure 4: LLH values against response spectra frequency for the GMPEs that get low LLH values 

for all frequencies. 
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Figure 5: DSI values against response spectra frequency for the GMPEs that get low LLH values 

for all frequencies. 
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Figure 6: LLH values against response spectra frequency for the GMPEs that get higher LLH 

values. 
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Figure 7: DSI values against response spectra frequency for the GMPEs that get higher LLH 

values. 
 
 
The model that presents the lowest LLH values over a large range of frequencies is the Japanese 
model of Kanno et al. (2006), although its low boundary in magnitude is only 5.2. The other models 
that obtain low LLH values as well are the models of Bommer et al. (2007) [EME], Akkar and 
Cagnan (2010) [Turkey], Faccioli et al. (2010) [Japan], Chiou and Youngs (2008) [California], 
Akkar and Bommer (2010) [EME] and the model for SCR Silva et al. (2002). These models have 
been developed for different regions and only two of them (Bommer et al., 2007 and Akkar and 
Cagnan, 2010) have been developed for magnitudes down to 3.8. The DSIs for these models all are 
positive, showing that data favor these models. Note that the LLH values obtained by these GMPEs 
range between 2 and 3. This means that they predict the observations only approximately well. The 
fact that GMPEs that differ quite a lot in terms of magnitude and distance ranges and also in region 
of derivation might tell that no model is able to predict well such low magnitudes in France. More 
work should be done to better understand the results. As a first step, one can compare predictions to 
observations in function of distance. Figure 18 shows PSA at 1Hz predicted by Kanno et al. (2006) 
and by Boore and Atkinson (2011) in function of distance, together with the observations. Kanno et 
al. (2006) predict in average well although it cannot reproduce the scatter in the observations. The 
model of Boore and Atkinson that has an LLH value of about 4.6 under-predicts observations 
especially for large distances.  
 
Figure 6 shows that the 13 other GMPEs give predictions that are not consistent with the data. This 
is especially true for frequencies larger than 1.5Hz. The 7 models for SCR are not able to predict 
well the observations especially at large frequencies. However, their adjustment to the French rock 
definition should improve this result. The model of Raghu Kanth and Iyengar (2007) should not be 
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taken into account because it systematically over-predict observations and has a very small standard 
variation. 
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Figure 8: Logarithm of PSA at 1Hz predicted (in blue) and observed (red) against distance for the 

models Kanno et al. (2006) and Boore and Atkinson (2008). 
 
 
 
5. Sensitivity of LLH-based results to source parameters uncertainties 
 
We focus on predictions of PSA at 1Hz to conduct a sensitivity analysis. 
 

• Magnitude. In order to assess the influence of magnitude uncertainties, we have computed 
LLHs by increasing or decreasing the events magnitudes by 0.1, 0.2, 0.3 and 0.5 for PSA at 
1Hz. Figure shows the comparison of the LLH obtained by adding or subtracting 0.2, 0.3 or 
0.5 to all magnitudes with LLH obtained with the original magnitudes. If no difference was 
observed, the points would be on the dotted line. What is observed is that by adding or 
subtracting 0.2 to the magnitudes, LLH values do not change significantly for GMPEs with 
a LLH lower than 4. Subtracting 0.3 gives significant differences for almost all GMPEs. 
With a change in 0.5 points, the results are very different. Note that these changes lead to an 
increase of the LLH values. This would mean that the original magnitudes that we are using 
are good estimates. Note also that the GMPEs that get the highest LLH values are more 
sensitive to magnitude uncertainties than the GMPEs that get low LLHs.  
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Figure 9: LLH values obtained by adding (up) or subtracting (down) 0.2, 0.3 or 0.5 to the events 
magnitudes in function of the LLH values with the original magnitudes. 
 

• Depth. LLHs have been computed by increasing the depth of all events by 5 km and by 10 
km for PSA at 1Hz. This modification has an influence only for GMPEs that use the 
hypocentral or the Joyner-Boore distance (which we suppose equal here). With an addition 
of 5 km and even of 10 km, rankings remain stable. This can be explained by the small 
amount of sites that are close to the events. No site is closer than 10 km to the sources, only 
12 over 182 sites stand between 10 km and 20 km to the sources. 

 
• Focal mechanism. LLHs have been computed for three cases: all events have a normal 

faulting or a reverse faulting or a strike slip faulting. No significant differences have been 
found between the three cases for PSA at 1Hz. The largest differences are obtained for the 
normal faulting. 

 
• Vs30 determination. Two NGA GMPEs have an option that accounts for the way the Vs30 

values have been derived, the models of Abrahamson and Silva (2008) and Chiou and 
Youngs (2008). They decided to make a distinction between estimated Vs30s and measured 
Vs30s because they observed a greater variability in the residuals for sites with Vs30 values 
inferred from geology than for measured Vs30 values. This distinction has an influence only 
on the standard deviation of the model. For the model of Chiou and Youngs (2008), we 
found no significant differences between LLHs derived from the option "estimated Vs30" 
and LLHs derived from the option "measured Vs30" for PSA at 1Hz. However, for the 
model of Abrahamson et al. (2008), we found an increase of 0.2 in LLH when using the 
option "estimated Vs30".  

 
6. Conclusion and next steps 
 
These first results show the discrepancies between candidate GMPEs to predict French ground 
motion at small magnitudes.  
 
With this study, I have identified 7 GMPEs over 20 that are able to predict reasonably well French 
recordings for the set of frequencies 0.2Hz - 10Hz. These GMPEs differ a lot in terms of magnitude, 
distance and region. They also get a LLH value that is not particularly low (between 2 and 3). I still 
do not fully understand why such GMPEs get such similar results. Therefore, I will work on 
deriving tools associated with different approaches (LLH, residuals, Kullback-Leibler divergence, 
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aggregation of models, ...) in order to gather as much information as possible about GMPEs 
prediction characteristics.  
 
SCR models, except the model of Silva et al. (2002) appeared to be inappropriate to predict the 
present French ground motion. I will apply an adjustment to French rock definition. This should 
improve their prediction. 
 
Magnitudes variations appeared to have a strong influence on LLH results. The uncertainties 
associated with the magnitude that can be large for historical events will have to be taken into 
account.  
 
Because of magnitude scaling, GMPEs that are able to predict well ground motion for small 
magnitudes will not automatically be able to predict well ground motion at larger magnitudes. This 
is why the LLH method will be applied to macroseismic intensities that have been collected for 
large historical earthquakes. 
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1. General comments  
 
D2-12 is a very short document that, in the present states only describes a method of ranking of 
ground motion prediction equations. As I understand it the scope of this task goes beyond simply 
ranking, as it is expressed by the authors themselves in the reviewed document, as follows: 
 
“The goal of the task X2-4 of work package 2 is to select and rank ground-motion prediction 
equations (GMPEs) for seismic hazard assessment (SHA) in France and surroundings countries. It 
is needed to establish a logic tree for ground motion prediction that captures well epistemic 

uncertainty” 
 
 (taken from document  being reviewed for deliverable D2-12). It follows the work documented 
in D2-5. (Ref.SIGMA-2011-D2-16,version1) 
 
The final product of the selection and evaluation of GMPEs  for use in SHAs in project SIGMA is a set 
of equations that predicts ground motion in the form of a mean value (or mean log) and a 
characterization of the aleatory uncertainty, as function of magnitude, some measure of distance, and 
a few other parameters. 
It is customary to identify independent classes of models, and different variations of models within a 
class, and to assign weights to each class, and to each model in a class, for the purpose of 
characterizing epistemic uncertainty, that has been chosen, as it is the common practice,  to be 
represented by a logic tree in the project. 
 
Although there is no unbiased way to effectively determine the weights objectively, there are objective 
ways to rank the models, such as with Sherbaum’s method (Sherbaum et al. 2009) based on use of 
recorded data. There is still a need to go from ranks to weights in a manner that makes sense, 
probably a combination of information on ranking, limitations of the models and some expert judgment. 
 
Aside for the form of the document which I find excellent, I have only the following comments or 
questions on this work, and I have suggestions for the presentation of November 17-18th. 
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1. First, I can only support the use of an objective method such as Sherbaum et al. method 

(2009) to inform analysts  on the relative relevance of models with respect to  observed 
data.  
 

2. The ranking method is properly applied and it gives valuable results. 
 

3. Since this is based on the pre-selection as documented in D2-5, why do we have a different 
number of equations. (Table 1 of D2-5 has 12 equations, and Table 2 has 10., but D2-12 
only considers 14 equations)? 
 

4. Which events are going to be used in the macro-seismic study, and what are the plans for 
it? 
 

5. How are the weights to be assigned to the branches of the logic tree going to be 
determined? What are the detailed  plans for this task? 

 
 

2. Recommendations for the November 18 presentation 
 

What is missing in the reviewed document is a presentation of a way forward. There is 
no explanation of how the ranking is going to be used. It may be that it is intended to 
be part of following work, but it is important to have a clear understanding as soon as 
possible of the directions to take.  
 

1. For this reason I strongly suggest that an effort be made to present the plans for 
the determination of the weights on the logic tree of ground motion prediction 
equations at the coming meeting of CS2.  
If the plans are not fully formulated, it is still important that we can discuss 
general plans and alternatives methods at CS2. 
 

2. Please give some details on the plans to use macro seismicity. What events will 
be used,  what results, are expected, how those results will be used in the 
context of updating the ranking and determining the weights. 

 
 
 
Respectfully submitted, November 3, 2011. 
 
 
 
Jean Savy  
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Review of the SIGMA Deliverable D2.12 (Ref : SIGMA‐2011‐D2‐17‐V01) 
 

" Methodology and Testing of GMPEs based on ground‐motion 

data from France and surrounding countries " 
 

(Author : E. Delavaud, ETHZ/SED, 01/11/2011) 

 
This  report  presents  a methodology  and  the  first  results  for  an  "objective"  ranking  of  a  number  of  pre‐
selected GMPEs  for  their application  to hazard assessment studies  in  the continental  territory of France. 
This  ranking  is  based  on  a  measure  of  the  fit  between  the  considered  GMPEs  and  the  available 
accelerometric data in France.  
The 11‐page, concise report consists of four sections 

• It starts with a short presentation of the used RAP data set 
• It then lists the 14 pre‐selected GMPEs 
• The  next  and  main  section  presents  briefly  the  testing  /  ranking  technique  based  of  the  "LLH" 

technique as proposed by Scherbaum et al.  (2009), and  its  results when applied  to  the considered 
data and GMPE sets. 

• The last section shortly wraps up the main results and lists a few open issues 
 
The idea to have a method for an objective ranking is a major breakthrough compared with the previous 
practice where the weighting of GMPEs was based mainly on expert  judgment.  It thus deserves a careful 
presentation and discussion. The following comments and questions intend to improve the presentation of 
this report, which should be one of the key elements not only for the SIGMA PSHA studies in South‐Eastern 
France, but also for all future hazard assessment studies in France. 

The data set :  
Testing GMPEs against a given data set requires the knowledge, for each earthquake and recording site, of 
the metadata  that are used  in  the  selected GMPEs.  In order  for  the present work  to be  reproducible,  it 
would be good to list, at least in an annex, the value of all the metadata associated with each recording or 
earthquake,  and  to  discuss  the  procedure  to  estimate  those  which  are  not  provided  in  standard 
seismological  catalogs.  It might  also  propose  directions  for  the  future  enrichment  of  the  RAP  data  base 
with appropriate metadata. 

• Source parameters :  
o Mw was probably derived from the work by Drouet et al. (2010). I am wondering whether it 

is an issue to use Mw values which are not independent of the used data set. 
o The magnitude  of  the  considered  events  is  limited,  and  so  is  the  corresponding  rupture 

area.  Therefore,  some  of  the  used  parameters  (such  as  ZTOR)  are  tightly  linked  to  the 
estimate  of  the  hypocentral  depth,  which  has  a  limited  precision:  a  discussion  on  the 
sensitivity of used GMPEs to source parameter uncertainties would be welcome 

o Focal mechanism : about 45% (8/18) of the used events have unknown focal mechanisms : 
how does this affect the results of the LLH technique ?  

• Site conditions :  
o the site classes and/or VS30 values were taken from the RAP site; there exists some concern 

about their reliability (there is a special working group dedicated to checking these values), 
and the stations used and the associated number of recordings should be at least listed in a 
Table to allow further checks when checked site conditions will be available. 

o Some of the used GMPEs include a distinction between measured and inferred VS30 values: 
how is this practically implemented for the LLH estimates?  

o How to estimate the value of Z1.0 required by some GMPEs (AS2008)?  
• Usable bandwidth:  some of  the used  recordings have been obtained at  large distances  (several 

hundred kilometers) from moderate magnitude events. Even though the RAP instrumentation is 
sensitive, and long period response spectra may indeed be related to intermediate frequencies, it 
is needed  in my opinion  to check  the  reliability of  such  recordings especially  in  the  long period 
range, for instance by investigating the signal to noise ratios over the whole frequency range.  



The tested GMPEs :  
• 14  candidate  GMPEs  are  considered,  5  for  stable  continental  regions  and  9  for  shallow  active 

crustal  regions.  This  pre‐selection  list  is  different  from  those  considered  in  D2.5  (indeed  it  is 
mainly a subset, except for Faccioli et al. 2010), and updates of the two reports D2.5 and D2.12 
should include either the same list, or explain why they are different (with a marked preference 
for the first option). 

• In addition, as some of the selected GMPEs require some of the adjustments listed in Deliverable 
D2.5 (horizontal component, magnitude, possibly style‐of‐faulting, …), it is needed to know which 
value of sigma is considered : the original one or the adjusted (increased) one ? 

The LLH method:  
I have  the – may be wrong  ‐  feeling  that  the present, very concise  report  is  certainly meaningful  for  the 
highly specialized GMPE community, but is too short to allow a full understanding of this new technique by 
a  wider  community  that  is  mainly  interested  in  simply  using  them  for  hazard  assessment  purposes.  A 
longer  presentation  and  explanation,  as  for  instance  in  Beauval  et  al.  (2011),  would  certainly  help  the 
"naïve"  reader  in understanding  the principle of  the  LLH approach,  and get  a  feeling of  the  LLH and DSI 
values that are expected as a function of the difference between the actual distribution of data, and those 
of the tested GMPEs. 
I have a few other, more technical comments and questions: 

• A similar  testing exercise  is  reported  in Beauval et al  (2011) with apparently  the  same data  set 
and  an  overlapping  GMPE  set,  with  however  somewhat  different  end  results  (despite  some 
similarities), which emphasizes the need for a discussion about the robustness of LLH results. 

• Some of the tested GMPEs are theoretically valid only for limited distance and frequency ranges. 
While  extrapolating  at  larger  distances  seems  straightforward,  I  do  not  understand  how  the 
Bommer et al.  (2007) GMPE can be  tested at  frequencies below 2 Hz.  Some  further details are 
needed, especially as this GMPE turns out to be the "best" one. 

• The Faccioli et al. (2010) also gets a good ranking score: this extension of Cauzzi & Faccioli (2008) 
should thus definitely be described in more detail in the companion report D2.5. 

• Is it conceivable, and would it be useful, to include the partitioning between intra and inter event 
variability in the LLH ranking, to better qualify the nature of the fit ? In any case, the plots (in an 
annex) of the the observed residuals between each selected GMPE and the actual RAP data, as a 
function of magnitude, distance and may be site conditions, would be informative on the origin of 
the misfit.  

• What is the “confidence interval” for LLH (or DSI) values? In other words, what may be considered 
as the minimum threshold for a statistically meaningful difference between the LLH values of two 
different GMPEs, which might then be used for assigning different weights to these two GMPEs ? 

• The application of  the same ranking method to two different data sets gives some hints on the 
robustness  of  the  approach  with  respect  to  the  data  set,  but  does  not  tell  much  about  the 
expectations for  larger magnitude events, especially  in the near source area where one expects 
damaging strong motion, for which the available data set is rather poor, as displayed in Figure 1. 
Some further developments / discussions on this  issue would be useful  to avoid any automatic, 
may be wrong, extrapolation of the present results to larger magnitude, less frequent events. 

 

Main recommendation 
I anticipate this report to be a key step for future hazard studies in France through its conclusions on GMPE 
ranking. I therefore recommend a significant update of the report in order to ensure a totally reproducible 
reasoning on the basis of fully transparent data and metadata, and address all the consistency issues with 
other SIGMA reports and parallel publications.  
 

Grenoble, 14/11/2011 
 
 

Pierre‐Yves BARD 


