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Executive Summary 
 
 
 

This PhD project is an action of SIGMA-WP2 which focuses on predictive models of the ground 
motion. A number of predictive models are based on so-called Ground Motion Prediction Equations 
(GMPE) developed empirically with a large dataset of accelerometric waveforms. However, in a 
region of moderate seismicity like Metropolitan France, the elaboration of GMPE remains difficult 
because catalogs of strong motion data are incomplete. This deficiency can be partly remedied by 
combining data from various regions of the world with similar tectonic settings, but at the expense 
of masking all the small-scale variations of the ground motion within the uncertainties of the model. 
Stochastic models constitute a viable alternative to GMPE but their predictions are highly 
dependent on seismic attenuation, which must therefore be determined beforehand. Unfortunately, 
seismic attenuation is still poorly known in Metropolitan France and a detailed map of its spatial 
variations is badly needed. There are two main causes for attenuation: absorption (dissipation) and 
scattering, which have different impacts on the amplitude and duration of the ground motion. 
Hence, the two broad objectives of the present study are (1) to provide maps of shear wave 
attenuation in France, (2) to estimate the relative contribution of absorption and scattering to the 
total attenuation. Absorption and scattering cannot be separated from the analysis of the amplitude 
of direct S waves only. Therefore, we propose to evaluate seismic attenuation from the modeling of 
both ballistic and coda waves, with an emphasis on the later. 
 

This report presents both experimental and theoretical results on the attenuation of coda waves in 
the Alpine range. Various procedures to estimate the coda quality factor (Qc) are reviewed and 
compared on real data. A robust experimental procedure to map lateral variations of coda 
attenuation is presented, and illustrated with preliminary maps which show that the typical scale of 
the spatial variations of Qc is of the order of 100 km. This result is a strong argument in favor of 
rapid lateral variations of attenuation properties in the crust. The maps of Qc delineate the main 
geological features such as the Appenines, the Po Valley and the Provence with high attenuation, 
and the Upper Rhine Graben and eastern Alps with low attenuation. We also present a theoretical 
study on the sensitivity of coda waves to spatial variations of scattering and absorption properties. 
These theoretical results will serve as a basis to develop a genuine tomographic approach to map 
lateral variations of scattering (Qsc) and absorption (Qi) from seismogram energy envelopes. 
 

The maps of shear wave attenuation that will be delivered at the end of our project will be useful 
for other actions in WP2 and WP1. In the context of seismic ground motion prediction, attenuation 
maps may lead to reconsider the classical regionalization approach which is currently based mostly 
on geological arguments. Moreover GMPE or stochastic prediction models for France, or at 
regional scale, may be also improved through a better estimation of shear-wave attenuation. For the 
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deterministic evaluation of seismic hazard, lateral variations  of shear wave attenuation may also be 
included in direct numerical simulations of the ground motion based on the elastodynamic equation. 
A better knowledge of the attenuation should also improve the evaluation of the source parameters, 
as for example the seismic moment and the corner frequency of small earthquakes. Finally, the 
empirical relations between the magnitude and the macroseismic intensity, used to estimate the 
magnitude of historical earthquake, may be re-evaluated in the light of a new estimation of the 
attenuation in France.  
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1. Introduction 

 

1.1 Ground motion attenuation 
 

Different contributions control the amplitude of a seismological signal. Signal amplitude can be 
described as the result of the convolution between a source term, a propagation term and a site 
response. The propagation term includes (1) geometric effects such as geometrical spreading 
(focusing/defocusing) or multipathing and (2) attenuation. Attenuation plays an important role in 
the observed variability of ground motion duration and amplitude. Anelastic and elastic processes, 
referred to as absorption and scattering respectively, control seismic attenuation but these two 
processes have distinct impacts on the ground motion. If we consider an absorption anomaly in an 
otherwise elastic medium, the seismic energy which propagates through this anomaly will be lost 
resulting in an overall decrease of ground motion amplitudes. By contrast, if we consider a 
scattering anomaly, the seismic energy which propagates through the anomaly will be redistributed 
into the medium. This phenomenon will entail a decrease of the direct wave amplitude, 
accompanied by an increase of the ground motion duration. 

Hence, if we are interested in the amplitude and duration of ground motions, it is important to 
estimate the total seismic attenuation but also to evaluate the relative contribution of scattering and 
absorption. 
 

1.2 Attenuation quality factor 
 

In seismology, attenuation is usually quantified by a quality factor Q. The amplitude of direct 
waves filtered in a narrow frequency band decreases with the hypocentral distance r as follows: 
 

exp −
  𝑘𝑟
2𝑄                                                                                                                                                   (1) 

 
where k is the wave number at the central frequency. The attenuation quality factor Q is related to 
the intrinsic or absorption quality factor Qi and the scattering quality factor Qsc through the 
formula: 
 

1
𝑄 =

1
𝑄!
+   

1
𝑄!"

                                                                                                                                          (2) 

 
Equation (2) reveals that it is impossible to distinguish between absorption and scattering from the 
observation of direct waves only. Additionally, even the estimation of the total Q from the 
amplitude of direct waves requires corrections of source -focal mechanism, magnitude-, path, and 
site effects, which are difficult to perform in practice. This motivates us to develop alternative 
approaches to evaluate the attenuation properties of the Earth based on the analysis of coda waves. 
In the next section we will argue that the analysis of coda waves is a better seismological approach 
to the evaluation of attenuation properties. 
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1.3 Seismic coda  

 

S-wave coda refers to the wave trains which follow the direct S-wave, whose average  
amplitude decreases smoothly with increasing lapse time. After the pioneering study of Aki [1969], 
it has been widely accepted that coda waves are composed of incoherent waves scattered by 
distributed heterogeneities in the lithosphere. The most important properties of coda waves, as 
described in the seminal papers of Aki & Chouet [1975] and Rautian & Kalturin [1978], are briefly 
summarized hereafter. These authors observed that, contrary to direct S-wave amplitudes, coda 
envelopes of local earthquakes exhibit a common smooth decay curve with increasing lapse time, 
irrespective of travel distance. They also observed that the coda decay is independent of the 
magnitude. Moreover, since coda waves are mostly scattered waves, their take-off angle samples 
uniformly the sphere of space directions at the source, which explains why the amplitude of coda 
waves is independent from the focal mechanism. Finally Phillips & Aki [1986], have shown that 
site effects manifest themselves as an overall increase of coda amplitude but leave no imprint on the 
coda decay.  
 

 
Figure 1: Schematic view of propagation models of coda waves at (a) short lapse time and (b) long 
lapse time in the coda. Black lines show wave paths between source (black triangle) and receiver 
(black point). Waves can be scattered off the direct source-receiver trajectory by heterogeneities 
(blue points) located in the medium.  
 
From these observations, Aki & Chouet [1975] concluded that the decay of the energy in the coda 
can be conveniently parameterized as follows: 
 

  𝐸 𝑡,ω ∝
1
𝑡!    e

! !!
!!(!)                                                                                                                                        (3) 
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where Qc is the coda quality factor characterizing the coda attenuation, ω is the angular frequency, 
and tα is an algebraic term which accounts for the effect of geometric attenuation. 

The physical interpretation of Qc depends on the lapse time. For example, at short lapse time in 
the coda (when t tends to the S-wave ballistic time tS), coda waves can be described by the single 
scattering model [Sato et al., 1977, 2012]. In this model, the coda is composed of waves that have 
been scattered only once on their way from source to station (Fig. 1.a). This implies that the energy 
decay in the coda can be expressed as follows [Aki and Chouet, 1975]: 
 

𝐸 𝑡,ω ∝
1
𝑡!   𝑒

!!" !
!!(!)

! !
!!"(!)                                                                                                         (4) 

 
Eq. (4) agrees with the parameterization (3) with 𝛼 = 2 and 1/Qc = 1/Qi +1/Qsc. At long lapse time 
(t ! +∞), coda waves are composed of multiply-scattered waves and enter in the diffusive regime 
as illustrated in Figure 1.b. In the diffusive regime, the decay of the energy in the coda can be 
expressed as: 
	  

𝐸 𝑡,ω ∝
1

𝑡!/!   e
! !!
!!(!)                                                                                                                                  (5)	  

 
which agrees with the parameterization (3) with 𝛼 = 3/2 and Qc=Qi. From this simple analysis, we 
conclude that, depending on the lapse time, coda waves are sensitive to both scattering and 
absorption (short lapse-time), or to absorption only (long lapse-time). This in turn implies that the 
effects of scattering and absorption can be easily separated through a lapse-time analysis of the coda 
decay. However the applicability of the single-scattering and diffusion models to real data is rather 
limited [Gusev & Abubakirov 1987; Hoshiba, 1991] and a more rigorous multiple-scattering 
approach is necessary, [Felher et al., 1992; Hoshiba, 1993]. Besides multiple-scattering effects, 
scattering anisotropy is yet another factor controlling the shape of the coda, in particular at short 
lapse-time [Hoshiba, 1995; Gusev & Abubakirov, 1996]. Calvet & Margerin [2013] argue that 
scattering anisotropy is responsible for most of the observed lapse-time dependence of Qc reported 
in the literature, and confirm that the decay of the late coda is mostly sensitive to intrinsic 
attenuation. Their conclusions are summarized in Figure 2. 

In conclusion, while effects of scattering and absorption can in principle be distinguished from a 
lapse-time analysis of coda waves, the early coda is sensitive to fine details of the medium and 
requires a detailed physical model incorporating scattering anisotropy. Therefore, in the first part of 
this work, we focus on the analysis of the late part of the coda.   
 

1.4 Objectives 

 

The two broad objectives of my thesis are as follows: 
(1) To provide maps of the attenuation quality factor of shear waves (Q) in France in the 

high-frequency band (>1 Hz). 
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(2) To estimate the contribution of intrinsic and scattering attenuation (Qi and Qsc) to the 
total quality factor. 

Following the discussion 1.3, we adopt a two-step approach: (1) estimate Qi from the rate of decay 
of the late coda and (2) estimate Qsc from the early coda, after correcting for the effects of intrinsic 
attenuation and scattering anisotropy. Scattering anisotropy will be estimated based on the work of 
Calvet and Margerin [2013]. 

The report is organized as follows: in section 2, we compare three methods of estimation of Qc 
found in the literature and discuss their advantages/disadvantages. In section 3, we present a method 
to map lateral variations of coda wave attenuation, with application to the French Alps and 
surrounding regions. We present maps of Qc in four frequency bands ranging from 1 to 16 Hz, 
which reveal clear lateral variations of coda wave attenuation. In section 4, we develop a physical 
model of multiply-scattered waves which allows us to interpret the spatial variations of coda wave 
attenuation in terms of spatial variations of attenuation properties (Qi, Qsc).  
 

 
Figure 2: Qc as a function of coda window duration Lw in the 4-8 Hz frequency band. The 
estimation of Qc has been performed in the 50-80 km epicentral distance range in the Pyrenees. We 
observe a transient increase of Qc with lapse time followed by a stabilization around a plateau 
(black arrow) whose average is about 800. The fluctuations of Qc around the mean plateau value 
(red arrow) reflect the spatial variations. At short lapse time (purple area), Qc is predominantly 
sensitive to scattering and anisotropy while at long lapse time (green area) Qc mainly depends on 
intrinsic absorption [Calvet et Margerin, 2013].  
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2. Measurement of Qc 

 

In this section, we propose to study three different classical methods of estimation of the coda 
quality factor Qc. The techniques differ in their domain of analysis (spectral or temporal) and in 
their statistical assumptions on the fluctuations of coda envelope. The estimates of Qc obtained for 
four seismograms recorded in the Alps will be compared and discussed. 
 

2.1 Methods 
 

To facilitate the comparison of the three methods, we present the main steps of the signal 
processing using a sample seismogram recorded in the Alps. The magnitude of the earthquake is 3.6 
and the epicentral distance is 50 km. Qc is estimated on a coda window with onset time tw=70s and 
duration Lw=50s. 

The first step of the signal processing is common to the three methods and consists in 
deconvolving the waveform from the station response. Acceleration and displacement data are 
converted to velocities. The parameters α and Qc of equation 3 cannot be estimated independently 
[Rautian & Kalturin, 1978].  Hence, the three methods require that the coda decay be corrected 
from the algebraic term tα in equation 3 where the value of the exponent α must be fixed a priori. 
Because the role of multiple scattering becomes more pronounced as the lapse time increases, we 
take α=3/2, which physically corresponds to a diffusion process in 3-D space. 
 

2.1.1 Standard method of Aki & Chouet [1975] 
 

The data are filtered in four frequency bands [1-2], [2-4], [4-8] and [8-16] Hz (Fig. 3.a). On the 
filtered waveform, we define the noise level as the average of the squared velocity in a window of 
10 seconds duration starting at the beginning of the record. The noise window is free from any P-
wave arrival thanks to a STA/LTA detection. The intensity envelop of the signal E(t,ω) is defined as 
the squared velocities. To smooth the intensity fluctuations, we apply a moving average window 
whose typical duration is of the order of 16 cycles (Fig. 3.b). The smoothed intensity envelop is 
corrected from the algebraic term t-3/2 of equation 3 (Fig. 3.c). In each frequency band, a least-
squares linear fit of the logarithm of E(t,ω)t3/2  as a function of time yields an estimate of Qc (Fig. 
3.c). The resulting value of Qc is accepted when (1) the correlation coefficient of the linear 
regression is greater than 0.7 and (2) the signal to noise (SN) ratio over the entire duration Lw of the 
coda window is greater than 4. In this least-squares approach, it is implicit that the fluctuations of 
the smoothed intensity obey Gaussian statistics. This may not be the case in practice and the method 
we present next takes explicitly into account the statistical fluctuations of the envelope. 
 

2.1.2 Method of Nakahara & Carcolé [2010] 
 

The method developed by Nakahara & Carcolé [2010] is also based on a time-frequency analysis 
and assumes a more flexible statistical distribution of fluctuations of the coda envelope. Recently, it 
was found that the random fluctuations of high-frequency seismogram envelopes follow the 
Nakagami-m distribution [Carcolé & Sato, 2009], where the probability density function p is given 
by: 
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𝑝 𝑟(𝑡) =
2𝑚!

E t,ω !Γ(𝑚) 𝑟
!!!!𝑒!

!
!(!,!)  !

!
                                                                                          (6) 

 
where Γ is the gamma function, E(t,ω) is the intensity in the coda at time t and frequency ω, m is 
the Nakagami-m parameter and r(t) is the analytic signal calculated from the original time series 
u(t) and its Hilbert transform H[u(t)] as follows: 
 

𝑟 𝑡 = 𝑢 𝑡 ! + 𝐻 𝑢 𝑡 !                                                                                                                         7  
  
Equation 6 shows that the Nakagami-m distribution depends on two parameters: (1) the m-
parameter which defines the shape of the distribution and (2) the intensity envelop E(t,ω) 
parameterized following equation 3. By varying m from 0 to infinity, the Nakagami-m distribution 
is able to express different kinds of standard distributions. For example, m=0.5 describes a half-
Gaussian distribution and m=1 matches a Rayleigh distribution. Moreover, Nakagami [1960] has 
shown that m is inversely proportional to the variance of r2. Therefore, m is an indication of 
fluctuations in the envelop: for larger fluctuations m becomes smaller and vice versa. 

In the method of Nakahara & Carcolé [2010], E(t,ω) depends on two parameters: (1) a constant γ 
controlling the overall amplitude of the coda and (2) the coda quality factor Qc : 
 

𝐸 𝑡, 𝑓 =   𝛾𝑡!! exp −
𝜔
𝑄!
𝑡                                                                                                                     (8) 

 
Note that α is fixed a priori (α=3/2). 

Nakahara & Carcolé [2010] have derived a Maximum Likelihood (ML) method to 
simultaneously estimate the m-parameter and Qc. They have introduced a log-likelihood function 
(logL) assuming that the n sampled amplitudes of the analytic signal at time ti (i=1, … , n) are 
mutually independent: 
 

𝑙𝑜𝑔𝐿 ≡    log𝑝[𝑟(𝑡!)]
!

!!!

                                                                                                                                  (9) 

 
The parameters γ and Qc controlling E(t,ω), and m, are estimated by finding the extrema of the log-
likelihood function in the (Qc, γ, m) space. The main steps of the data processing are summarized in 
figure 4. First, the data are filtered in the same four frequency bands as in the Aki & Chouet [1975] 
method. Next, the analytic signals are computed following equation 7 (Fig. 4.a). From the whole 
coda window (tw=70s, Lw=50s), we have estimated the statistical m-parameter (Fig. 4.b) and the 
coda envelop parameters γ and Qc with the ML method (eq. 9). The extremum of equation 9 was 
numerically found by using a bisection method, assuming that m ranges from 0.1 to 5 and that ω/Qc 
ranges from 0 to 1.7. The lower and upper limits of m and ω/Qc have been determined empirically 
by testing a large dataset and assuming that negative coda-Q is not physically reasonable. The 
extracted coda envelop E(t,ω) is shown in figure 4.c. 
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Figure 3: Illustration of the signal processing technique developed by Aki & Chouet [1975] to 
estimate Qc in the 8-16 Hz frequency band. (a) Normalized vertical velocities as a function of time. 
The gray area indicates the coda window is indicated by a gray rectangle. (b) Normalized intensity 
of the seismogram as a function of lapse time. The intensities are obtained by averaging the 
squared velocities in a moving window of duration 16 cycles. (c) Estimation of Qc by linear 
regression: the blue curve indicates the normalized smoothed intensity corrected from the 
geometrical term (t3/2) as a function of lapse time. The red line shows the result of the least squares 
fit.  
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Figure 4: Illustration of the signal processing technique developed by Nakahara & Carcolé [2010] 
to estimate Qc in the 8-16 Hz frequency band. (a) Normalized amplitude of the analytic signal as a 
function of time. The coda window is indicated by a gray area. (b) Probability distribution of the 
normalized amplitude (A/<A2>) of the analytic signal in the coda window. The black line shows the 
probability density function of Nakagami for m=0.6, where m has been estimated with a ML method 
(see text). (c) Normalized amplitude of the analytic signal as a function of lapse time. Red line 
shows the estimated coda decay based on the ML method (see text). 
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Figure 5: Illustration of the signal processing technique developed by Xie & Nuttli [1988] to 
estimate Qc. (a) Normalized unfiltered vertical velocity as a function of time. The coda window 
(gray area) is divided into ten subwindows of length 5 seconds, with central time τi, where i is the 
subwindow index. (b) Plot of the amplitude spectra for two subwindows of central time τ2 (left) and 
τ4 (right) respectively. Each amplitude spectrum is subsequently smoothed by computing the 
geometric average in logarithmically spaced frequency windows (red and blue curves). (c) Mean 
spectral ratio (<A(τi)/A(τi+2)>)i as a function of frequency. <>i indicates an average over all 
possible time windows. The parameters (Q0/η) of the power law Qc=Q0fη are determined from a 
least squares fit of the frequency dependent amplitude spectral ratio. 
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2.1.3 Method of Xie and Nuttli [1988] 
 

Adopting a different point of view, Xie & Nuttli [1988] propose to estimate Qc with a spectral 
method. Their data processing technique has been developed for the estimation of the coda quality 
factor of Lg waves and has been adapted to our needs. Compared to the two previous methods, Xie 
& Nuttli [1988] make the following assumption on the frequency dependence of Qc: 

 
𝑄! = 𝑄!𝑓!                                                                                                                                                   (10) 

 
The purpose of the method developed by Xie & Nuttli [1988] is to retrieve the parameters Q0 and η 
of the power law (10). Note that when the data deviate strongly from the power law (10), it has an 
impact on the estimate of Qc at all frequencies, which is a drawback of this approach. The main 
steps of the method are illustrated in Figure 5. 

First, we divide the coda window of duration Lw=50s into non overlapping subwindows of 
length 5 seconds. Note that this procedure applies to the unfiltered time series. Each of the ten 
resulting subwindow is characterized by a central time τi, where i is the index of the subwindow 
(Fig. 5.a). Using a Fast Fourier Transform, we compute the amplitude spectrum for each 
subwindow, after application of a cosine taper of width 10%. Following the work of Aki & Chouet 
[1975] and the assumption (10), the amplitude spectrum for a given subwindow Ai  can be expressed 
as follows: 
 

𝐴!   ∝    𝜏!
!/! exp −

𝜋𝑓!!!𝜏!
𝑄!

                                                                                                          (11) 

 
Note that the geometrical exponent α is divided by 2 compared to the method of Aki & Chouet 
[1975] because we consider amplitudes. The amplitude spectrum in each subwindow is 
subsequently smoothed by computing a geometric average in logarithmically spaced frequency 
windows. The resulting smoothed amplitude spectrum is denoted by <A>i. Two examples of 
smoothed amplitude spectra for subwindows 2 and 4, are shown in figure 5.b. Next, we define the 
scaled logarithmic ratio of the smoothed amplitude spectra R as follows: 
 

𝑅!,!!!! =   
1

𝜏!!! −   𝜏!
   log

𝜏!!!!/!   𝐴 !

𝜏!!/!   𝐴 !!!!
                                                                                    (12) 

 
where Nr is half the number of subwindows. Note that the frequency dependence of the amplitude 
spectrum ratio Ri is implicit in equation 12. As shown by Xie & Nuttli [1988], the definition of the 
smoothed spectral amplitude in equation 12 implies that its probability density function is of 
Rayleigh type. To reduce the fluctuations, the quantity Ri is averaged over all possible pairs of 
subwindows: 

𝐹 =   
1
𝑁!
   𝑅!,!!!!                                                                                                                                     (13)
!!

!!!
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with Nr=5 in our case. The parameters Q0 and η of the power law (10) may be estimated by taking 
the logarithm of equation 13: 
 

log!" 𝐹 = 1− 𝜂 log!" 𝑓 −    log!" 𝑄!                                                                                         (14) 
 
and by applying a simple least-squares linear regression in the log-frequency domain. The estimated 
frequency dependence of Qc is shown in figure 5.c together with the original data. We observe that 
the power law (10) applies in the 1-10 Hz frequency band only.  

 
Figure 6: Mean spectral ratio as a function of frequency computed for (a) Lw=50s and (b) Lw=70s. 
The red lines show the resulting least squares fit. 
 
As seen previously, the technique of Xie & Nuttli [1988] has been developed for Lg-coda waves 
which usually have a long coda duration, typically of the order of 200s. To test the robustness of the 
method, we have applied the method to a longer coda of duration Lw=70s. Note that the value of 
Lw cannot be greater than 70s because most earthquakes of our dataset have relatively small 
magnitudes. A comparison of the estimate of Qc for Lw=50s and Lw=70s is shown in figure 6. We 
observe that the data variance is reduced and that the power-law (10) is better verified in the 
frequency range of interest. In particular the correlation coefficient of the linear regression in the 
log-frequency domain increases from R2=0.7 to R2=0.87. In addition, the uncertainties associated to 
Q0 and η are also reduced by nearly a factor of 2. This result suggests that the method of Xie and 
Nuttli [1988] is much better suited to Lg codas of long duration, than to short codas of local 
earthquakes. 
 

2.2 Comparison of the methods 
 

We propose to briefly compare between the results of the three methods in the 8-16 Hz 
frequency band. We select four earthquakes with epicentral distances of about 50 km and 
magnitudes in the range 3.1-3.6. The criterion used to select the record is a long coda duration with 

(a) (b)
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high signal to noise ratio, so that the comparison is not hampered by the noise level. We also make 
sure that the coda is not contaminated by undesired signals such as aftershocks or storms. The 
signals were recorded in the Alps on the SismAlp network. Figure 7 shows  a comparison between 
the estimates of Qc with uncertainties, for coda windows of duration Lw=50s (Fig. 7.a), and 
Lw=70s (Fig. 7.b). 

 

 
Figure 7: Comparison of Qc measurements for four seismograms recorded in the Alps with coda 
window duration Lw = 50s (a),and Lw=70s (b). The estimations of Qc have been performed with 
the three methods described in the text and are denoted by different coloured symbols (see the 
legend in inset). 
 
For the shortest coda duration, we observe that the estimates of Qc obtained by the Aki & Chouet 
[1975] and Nakahara & Carcolé [2010] methods are in very good agreement, well within the 
uncertainties. By contrast, the results of the method of Xie & Nuttli [1988] differ by about ± 20 % 
from previous two. This tendency is reduced when we consider a longer coda duration (Fig. 7.b). 
 

2.3. Conclusion 
 

From the comparison between the three methods of Qc estimation presented in this section, we 
can draw two conclusions: 

(3) The method of Xie & Nuttli [1988] has two main problems: its strong assumption on the 
frequency dependence of Qc (Eq. 10) and its lack of robustness for short coda durations 
(Fig. 7) typical of our dataset  (Lw<100s). 

(4) Even if the method of Nakahara & Carcolé [2010] takes into account explicitly the 
details of the statistical fluctuations of the coda envelope, its results are nearly identical 
to those obtained by the technique of Aki & Chouet [1975]. 

We are thus confident in the simple but well adapted technique of Aki & Chouet [1975] to estimate 
the S-coda quality factor. However, we will probably make use of the method of Xie & Nuttli 
[1988] at a later stage of this project, since we plan to analyze Lg-codas to map the attenuation in 
areas of low seismic activity.   

(b)(a)
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3. Lateral variations of Qc 

 

In this section, after briefly reviewing the existing maps of attenuation for Metropolitan France 
as a whole, we will focus on the French alpine range and its surrounding regions. Because Qc is 
lapse time dependent [Calvet & Margerin, 2013], we will discuss in some details the optimal choice 
of epicentral distance Δ and coda window parameters (tw, Lw) to avoid biases in the mapping 
procedure. Finally, we will present and discuss frequency-dependent maps of Qc for the Alps. 
 

3.1 Attenuation of crustal phases in France 
 

Nicolas et al. [1982] were the first to study the attenuation of crustal phases at regional distances 
– in particular Lg waves – in Metropolitan France. Using a simple linear regression of the log-
Amplitude of band-passed filtered signals as a function of epicentral distance, they were able to 
identify low-Q regions in Eastern France (Rhône Valley and Ivrea Zone). Their study reveals that 
Lg waves are strongly attenuated (low Q value) when propagating through the Rhone Valley or the 
Ivrea Zone in southeast of France. 

 
 

Figure 8: Spatial variations of the apparent attenuation of S waves in the French crust at six 
frequencies ranging from 2 to 10 Hz [Campillo & Plantet, 1991]. On the attenuation map at 6 Hz, 
the blue and red points indicate the station locations for the blue and red records shown in Figure 
9. 
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Using a larger dataset, Campillo & Plantet [1991] have obtained the first frequency-dependent 
maps of attenuation with good spatial coverage for France. They have developed an inversion 
scheme based on a starting model with homogeneous quality factor of S-wave Qs, estimated with 
the method of Xie & Nuttli [1988] (see section 2). The starting model is subsequently refined on a 
regular grid which yields a continuous distribution of the apparent attenuation of Lg waves 
[Campillo et al., 1985 and Campillo & Plantet, 1991]. The resulting attenuation maps are shown in 
figure 8 in six narrow frequency bands ranging from 2 to 10 Hz. At frequencies higher than 4 Hz, 
the maps of Qs exhibit a high attenuating area in southeastern France also revealed by Nicolas et al. 
[1982]. However, except for this highly attenuating zone, the estimates of Qs seem to be 
homogenously distributed over the country regardless of the frequency band. 

 

 
Figure 9: Two typical examples of seismograms recorded in the Alps for an earthquake of M=3.6, 
at an epicentral distance of about 85 km, in the 4-8 Hz frequency band. The smoothed envelops as a 
function of lapse time are plotted on the right of the figure. Notice the large difference of coda 
attenuation observed at a regional scale. 
 

Figure 9.a shows two typical examples of seismograms recorded in the Alps at the same 
epicentral distance (Δ~ 85 km) for an earthquake of magnitude 3.5. The station locations are 
depicted by the blue and red points on figure 8, respectively. We can observe notable differences in 
both the shape and duration of the signals. In particular, the blue envelope exhibits a rate of decay 
of the coda roughly 2.5 times slower than the red envelope (Fig. 9.b). This suggests a clear 
difference of attenuation properties below the two recording stations which is not visible on the 
attenuation maps of Campillo & Plantet [1991]. 
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Following the work of Calvet et al. [2013], who have revealed fine scale (~50 km) variations of 
coda attenuation along the Pyrenean range, we have applied their mapping technique to a dataset of 
waveforms recorded in the Alps. Our aim is to illustrate in greater detail the spatial variations of Qc 
for the alpine range. 
 

3.2 Data and networks 
 

In this study, we analyse velocity waveform data recorded by permanent and temporary seismic 
networks in the French Alps and surrounding regions. The area of investigation extends from the 
Rhine Graben in the north, to the northern Apennine Range in the south, and includes the Eastern 
and Western Alps. We have selected about 2000 weak to moderate earthquakes, which occurred 
between 1995 to 2013, with local magnitude ranging from 3 to 6. Focal depths vary between 1 km 
and 20 km. Location of epicenters, local magnitude and origin time of earthquakes have been 
determined by the Réseau NAtional de Surveillance Sismique (RéNASS) and the Centre 
Sismologique Euro-Méditerranéen (CSEM). Our dataset contains short period waveforms from 
RéNASS (69 stations) and SismAlp (29 stations). We also include accelerometric data from RAP 
(Réseau Accélérométrique Permanent – 63 stations) and broadband data from the Observatories and 
Research Facilities for European Seismology (ORFEUS) data center through requests with the 
ArcLink protocol. Most of the short period and accelerometric data are recorded by triggered 
systems which often implies short coda durations, whereas broadband stations record continuously. 
Locations of epicenters and stations are reported on Figure 10. Waveforms were selected to have an 
epicentral distance smaller than 200 km. In this epicentral distance range, records show a prominent 
S-wave coda, which facilitates the investigation of spatial variations of attenuation. 
 

 
 
Figure 10: (a) Locations of stations used in this study. Short period (SP), accelerometric stations 
(AC) and broadband (BB) are denoted with a dark-blue triangle, light-blue triangle and white 
triangle respectively. (b) Seismicity of the Alps in the 1995 to 2013 period. The color scale indicates 
the range of local magnitude estimated for each event.	  
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The available dataset comprises more than 88000 waveforms with both long and short coda 
duration, sometimes affected by undesired signals such as aftershocks, storms, etc. We have 
developed an automated algorithm to select records with long coda duration, free from any 
undesired arrivals. To be selected, the records should obey the following criteria: 

(1)  Record duration larger than 70 seconds. 
(2)  Coda duration larger than 20 seconds. We define the coda window as follows: it starts at 

the time where the smoothed envelope defined by Aki & Chouet [1975] (see section 2) is 
maximal and ends at the time where the SN ratio is lower than 4. Note that the noise level 
is taken at the beginning of the signal, in a window of length 5 seconds.  

(3)  Intensity should decrease continuously in a coda window of maximal duration Lw=100s. 
The coda window is divided into overlapping subwindows of length 5s and characterized 
by a central time τ. We compute the mean intensity for each subwindow and we select 
records for which the mean intensity decreases with the central time τ. 

The automatic selection removes 48% of the records from the initial database: the criterion (1) 
removes 7% of the records, and the combination of the criteria (1) and (2) removes 39% of the 
waveforms. 

To test the robustness of our automatic selection program, we selected manually clean coda 
records from a subset of our initial database. This visual inspection rejects 38% of the records only, 
but at the expense of a highly time-consuming procedure. Considering the 10% loss as acceptable, 
the selection program has been then applied to the whole dataset of waveforms recorded in the Alps 
(~88000 waveforms). The final dataset of clean codas is composed of about 41000 waveforms on 
which we will perform the estimation of Qc.  
 

3.3 Coda window definition 
 

Because the estimate of Qc is lapse-time dependent [Calvet & Margerin, 2013], we have to 
optimize the choice of coda window parameters (tw, Lw) and epicentral distance range Δ to 
minimize potential measurement biases. In this paragraph, we consider data band-passed around a 
central frequency of 6 Hz. We adopt the procedure of Aki & Chouet [1975] and retain estimates of 
Qc when the correlation coefficient of the linear fit exceeds 0.9 (see section 2). Figure 11 illustrates 
the lapse time dependence of Qc, for an onset of the coda window tw=2tS – commonly adopted in 
seismological literature – and a duration of the coda Lw=30s. At short epicentral distance, the coda 
window is located closer to the S-wave arrival than at larger epicentral distance and Qc is thus 
underestimated. Consequently, if different coda windows are mixed (early and late coda window), it 
will be difficult to distinguish variations of Qc caused by variations of the epicentral distance, from 
variations of Qc caused by spatial variations of the attenuation. To avoid this problem, the 
epicentral distance range must be bounded, and the coda window parameters (tw, Lw) must be 
chosen in a way such that the measurements are free from any lapse-time dependence. 

First, we limit the epicentral distance to the range 50-80 km and explore different onsets of coda 
window: tw=50s, tw=60s and tw=70s after the origin time of the earthquake. Note that tw is always 
larger than 2tS. We vary the duration of the coda window (Lw) between 20s and 130s. Figure 12 
clearly displays an overall increase of Qc with Lw, which is known as lapse-time dependence of 
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coda Q in the literature. Qc typically varies from 350 at shot lapse-time to 750 at long lapse-time. 
Note that Qc does not increase indefinitely with the lapse-time, but rather stabilizes around a 
plateau value of 750 ± 200. The length of the coda window required to reach the plateau decreases 
as the onset time of the coda increases (Lw=80s for tw=50s and Lw=50s for tw=70s). For 
sufficiently large Lw (≥80s), the plateau is always reached, independent of tw. However, with the 
available data, we cannot impose such a long coda duration, because seismic records are often 
either truncated or hampered by the noise level. For the epicentral distance range 50-80 km, we thus 
select the following coda window parameters: tw=70s and Lw=50s. 

 

 
Figure 11: Normalized intensity envelopes of two seismic signals recorded at an epicentral 
distance of 40 km (blue) and 100 km (green) in the 4-8 Hz frequency band. Envelopes have been 
corrected from the geometrical term (t3/2). The coda onset is taken at the classical value tw=2tS. The 
thick lines indicate the coda decay estimated by linear regression of the logarithm of intensity as a 
function of time. Because the blue data are recorded at shorter epicentral distance, the coda decay 
may be overestimated in this case. 
 

 
Figure 12: Qc as a function of the coda duration Lw in the 4-8 Hz frequency band. The epicentral 
distance ranges from 50 to 80km. Each measurement is denoted by a grey point with the associated 
error bar. The solid and dashed lines show the mean lapse time dependence of Qc and the 
associated uncertainties respectively. The analysis has been performed for three onsets of coda 
window: tw=30s (left), tw=50s (center) and tw=70s (right). Qc reaches a plateau at long lapse time 
in the coda (tw=70s) with a duration Lw=50s.  
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We interpret the variations of Qc (± 200) around the plateau as an indication of strong lateral 
variations of attenuation in the Alps. Note that the uncertainty of individual measurements is 
typically (± 20), which is one order of magnitude lower than the observed spatial variation of Qc 
(see error bars in Fig. 12).	  

We now explore the measurements of Qc in a larger epicentral distance range. Figure 13 shows 
Qc at 6 Hz as a function of epicentral distance for tw=70s and Lw=50s. The purpose of this plot is 
to determine the range of epicentral distance which guarantees that Qc is indeed estimated on the 
plateau identified in Figure 12. While Qc is almost independent of the travel distance for Δ<180km, 
we observe that Qc decreases for larger epicentral distances Δ. This observation is consistent with 
the lapse-time dependence shown in Fig. 12. For Δ>180 km, the ballistic time of S-wave is typically 
larger than 50s. Because the coda onset is fixed  (tw=70s), Qc is estimated in the very early coda 
where the energy decay is faster in this case. 	  

	  

	  
 

Figure 13: Qc as a function of epicentral distance in the 4-8 Hz frequency band. The onset and 
duration of the coda window are fixed (tw=70s, Lw=50s). 
 

Following the previous discussion, we conclude that the best compromise is to measure Qc in a 
coda window of duration 50s, starting 70s after the origin time of the earthquake, for epicentral 
distances smaller than 180 km. Note that we verified that Qc is independent of Δ (Δ≤180 km) in the 
four frequency bands of interest. 
 

3.4 Qc maps 
 

" Mapping methodology 
In each frequency band (1-2Hz, 2-4Hz, 4-8Hz and 8-16 Hz), we follow the mapping method 

employed by Calvet et al. [2013] for the Pyrenees. Only 2-D lateral variations of Qc are considered 
in this approach. The target region is discretized into pixels of dimension 50 km × 50 km. For each 
source receiver pair, Qc is measured using the procedure outlined in section 2.1.1 and the value of 
Qc is stored in each pixel crossed by the direct ray path between the source and the station. An 
average over all paths is performed to obtain the local value of Qc. A spatial smoothing over an area 
covering a square of 9 pixels is subsequently applied. Only pixels crossed by more than 3 ray paths 
are retained. 
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Figure 14: Left: Map of the regional variations of Qc. Right: ray path density. Qc is estimated in 
four frequency bands, from [1-2] Hz (top) to [8-16] Hz (bottom).   
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" Qc maps 
 

We have applied the methodology described above to map the spatial variations of Qc in the 
Alpine range. Figure 14 shows the spatial distribution of Qc and the ray path density in the four 
frequency bands (from [1-2] Hz to [8-16] Hz). Low attenuation (large Qc values) is indicated in 
blue whereas strong attenuation (low Qc values) is indicated in red. The spatial coverage of the 
Alpine range is rather good from 1 to 8 Hz. Because we have unfortunately requested waveforms 
with a sampling rate of 20 Hz, we do not have high-frequency measurements in the eastern part of 
the Alps. This deficiency will be remedied soon. 

At all frequencies, the ratio between the lowest and largest value of Qc is typically larger than 2. 
The typical scale of the spatial variations of the coda quality factor is of the order of 100 km, which 
suggests rapid lateral variation of attenuation properties in the crust. 

Some geological formations such as the Upper Rhine Graben and the eastern Alps show up 
clearly on the maps and systematically exhibit lower attenuation than the Po Valley and the 
Apennines. High-attenuation in the Appenines had been previously proposed, based on the rapid 
attenuation of the coda of Pn-waves [Mele et al., 1996]. The French Alps are characterized by an 
attenuation gradient increasing from the north-west to the south-east. Even if the attenuation pattern 
is complex it appears relatively independent of frequency. A notable exception is a low attenuation 
region located between Torino and Geneva, which is clearly visible in the 1-2 Hz frequency band 
and disappears at higher frequencies. This region encompasses the Ivrea body, which exhibits both 
fast seismic velocities in the upper crust, and a large positive gravity anomaly. This geophysical 
anomaly is interpreted as a piece of lithospheric mantle which has been sandwiched in the crust 
during the formation of the alpine range (near the Mont-Blanc massif). Our observation of high-Qc 
in the Ivrea zone strongly suggests that small-scale heterogeneities (and not absorption) are at the 
origin of the Lg propagation anomalies reported in the literature (Nicolas et al. [1982], Campillo et 
al. [1993]).  

 
Figure 15: Regional variations of Qc in the main French geological formations: Pyrenees, Rhine 
Grabben and Alps, in the 4-8 Hz frequency band. The alpine range appears clearly more 
attenuating (low Qc in red color) than other regions.  
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3.5 Conclusion 
 

Even if this work is still in progress, Qc maps show that the attenuation strongly varies over the 
Alpine range. Qc maps delineate the main geological features such as the Apennines and the Po 
Valley with high attenuation, and, the Upper Rhine Graben and the eastern Alps with low 
attenuation. We have already started to map Qc in other regions of France in the 4-8 Hz frequency 
band (Fig. 15). With our available dataset, it clearly appears that attenuation in the Pyrenees and the 
Rhine Graben is lower than in the Alpine range which qualitatively agrees with the estimate of Qs 
proposed by Drouet et al. [2010]. 
We expect to obtain a much more detailed map of attenuation by adopting a finer tomographic grid 
in regions where the density of ray paths is large, in particular in southeastern France, in the Rhine 
Graben and in the Apennines. To improve the spatial coverage, we will complement our current 
dataset with waveforms from the Laboratoire de Détection et de Géophysique (LDG-CEA) and 
from temporary networks (e.g: PYROPE, PYROPE +). 

4. Sensitivity of coda waves to spatial variations of scattering and absorption 
 

In this section, we propose to study the sensitivity of coda waves to spatial variations of 
scattering and absorption. After a review of different observations which allow the quantification of 
the two different processes (scattering/absorption), we will detail the theory of sensitivity kernels 
underlying the tomographic approach we intend to develop. We conclude this part by showing 
examples of sensitivity kernels of coda waves to spatial variations of absorption and scattering. 
 

4.1 Observations 
 

Numerous studies have documented spatial variations of seismic wave attenuation in the crust 
from coda waves analysis [e.g: Xie & Mitchell, 1990; Nishigami, 2000; Taira et al., 2007; Mitchell 
et al., 2008; Carcolé and Sato, 2010; Calvet et al., 2013]. Qc maps obtained for the Alps (Fig. 14) 
and Metropolitan France (Fig. 15) clearly show that the attenuation is not spatially homogeneous. 
However, the physical interpretation of Qc is ambiguous and depends on the lapse time. As 
discussed in the introduction of this report, two observations, one at long lapse time and another at 
short lapse time, will be necessary to quantify the relative contribution of scattering and absorption 
to the total attenuation. At sufficiently large lapse time, Qc is expected to be close to Qi. Carcolé & 
Sato [2010] found that the spatial dependence of Qc is very well correlated with fine-scale lateral 
variations of the intrinsic quality factor of shear waves. By contrast, Qc at short lapse time in the 
coda is sensitive to both scattering and absorption.  

To quantify the strength of the scattering, the peak delay time of shear waves (Tpd) [Sato, 1989; 
Obara & Sato, 1995] may also be employed. Tpd is defined as the time lag between the onset of 
shear waves and the maximum of the seismogram envelope. It primarily reflects the scattering 
properties of the medium. One remarkable example of peak delay time analysis has been provided 
by Takahashi et al. [2007]. They showed that Tpd increases drastically when the direct S-wave path 
between source and station intersects the quaternary volcanoes in northern Japan.  

By comparing maps of Qc at long lapse time and Tpd in the Pyrenean range, Calvet et al. [2013] 
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have proposed a qualitative interpretation of the origin of seismic attenuation 
(absorption/scattering). For example, in the Eastern Pyrenees, they proposed that absorption is 
dominant over scattering at high frequency. Because both Qc and Tpd are influenced 
simultaneously by scattering and absorption, more quantitative analyses are necessary to confirm 
(or infirm) these conclusions. As an example, a strong absorption anomaly may significantly shift 
the maximum of the seismogram towards short lapse time [Saito et al., 2002] and be misinterpreted 
as a sign of weak heterogeneity in the medium.  

The MLTWA approach developed by Fehler et al. [1992] permits to quantitatively retrieve Qi 
and Qsc as a function of frequency by modeling the spatio-temporal distribution of energy in the 
coda. The energy is estimated in consecutive lapse time windows, the first window including the S-
wave arrival. By appropriately regionalizing the data, it is thus possible to obtain maps of scattering 
and absorption parameters with high level of details as illustrated by Carcolé & Sato [2010] for 
Japan. However, the MLTWA analysis cannot be considered as a genuine tomographic method for 
two reasons: (1) it relies on an a priori regionalization of the data and (2) MLTWA only retrieves an 
equivalent uniform model of scattering and absorption that fits the data. 

We thus propose to develop a tomographic approach to map scattering and absorption anomalies 
from coda waves. We explicitly take into account the spatial variations of propagation properties in 
a given region, which is in sharp contrast with the regionalization approaches discussed above. The 
first step of a classical tomography as summarized by Nolet [2008] is to derive linearized relations 
between a given seismic observable – the intensity in the coda (e.g) – and the governing physical 
parameters – the scattering and absorption quality factors. These relations depend on so-called 
sensitivity kernels which quantify the perturbation of the detected intensity induced by a local 
perturbation of the propagation properties. As the spatial sensitivity of Qc was not clearly 
understood, various mapping strategies have been previously proposed. For example, to obtain the 
Qc maps shown in Fig. 14, we have chosen to distribute the sensitivity of the measurement of Qc 
along the ray path between the source and the receiver. This choice has been supported by the 
works of Pacheco & Snieder [2005] and Rossetto et al. [2011] who have shown that in the diffusive 
propagation model (at long lapse time), the sensitivity of coda waves is expected to be larger at the 
the source, the receiver and on the direct ray path. Because coda waves sample the area contained in 
the single scattering ellipse whose foci are located on the source and on the receiver, some authors, 
e.g. Xie & Mitchell [1990], have also proposed to distribute homogeneously the sensitivity of the 
Lg-coda (and thus Qc measurements) inside the single-scattering ellipse. In the next section, these 
assumptions will be critically examined by computing the sensitivity of coda waves to scattering 
and absorption using a multiple-scattering model. 
 

4.2 Theory 
 

To model the transport of energy in a scattering and absorbing medium, we introduce the 
radiative transfer equation satisfied by the specific intensity I(r,  𝒏, t): 
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𝜕𝑡 + 𝑐  𝒏 ∙ ∇ 𝐼 𝒓,𝒏, 𝑡 = −
𝜔

𝑄!" 𝒓
+

𝜔
𝑄! 𝒓

𝐼 𝒓,𝒏, 𝑡 +
𝜔

𝑄!" 𝒓
𝑝 𝒏,𝒏′ 𝐼 𝒓,𝒏!, 𝑡 𝑑𝒏! + 𝑆 𝒓,𝒏, 𝑡

!!!!

	  

(15) 
The specific intensity quantifies the flux of energy directed around the unit vector 𝒏 at point r and 
time t in a scattering medium. The parameter ω denotes the angular frequency. In this work, we 
consider only infinite 2-D random media with constant background velocity c. The quantity Qsc(r) 
denotes the spatially varying quality factor of scattering, which controls the strength of the 
scattering in the heterogeneous medium. Qi(r) corresponds to the spatially varying intrinsic quality 
factor. Note that the radiative transfer equation has so far been used to retrieve spatially-
independent attenuation parameters Qi and Qsc by regionalization approaches [Gusev & 
Abubakirov, 1999a; Margerin et al., 1999; Carcolé & Sato, 2010; Calvet & Margerin, 2013]. 
Scattering anisotropy is described by the phase function p(𝒏,  𝒏’), which gives the probability that 
energy propagating in direction 𝒏’ be deflected into direction 𝒏. The source of energy is 
encapsulated in the term S(r,  𝒏,t) which describes the flux injected in the medium in direction 𝒏 at 

point r and time t. Finally, the symbol 𝑑𝒏′!!!!  denotes an integral over the unit sphere of space 
directions in d-dimensional space. Equation (15) can be deduced at the phenomenological level 
from a local balance of energy. In seismology, radiative transfer has become a standard tool to 
model the propagation of short-period seismic waves as reviewed in the book by Sato et al. [2012].  

To derive the sensitivity kernel, we use standard perturbation theory as applied to other linear 
partial differential equations of physics. The method assumes that spatial variations of absorption 
and scattering properties are superposed upon a statistically homogeneous background with quality 
factor 𝑄!"!  and 𝑄!! for scattering and absorption, respectively. The perturbation of the reference 
medium can be written as follows: 

 
1

𝑄!"(𝒓)
=

1
𝑄!"!

+ 𝛿
1

𝑄!"(𝒓)
                                                                                                    (16𝑎)	  

 
1

𝑄!(𝒓)
=

1
𝑄!!

+ 𝛿
1

𝑄!(𝒓)
                                                                                                          (16𝑏) 

 
The weak perturbation condition demands in addition that perturbations of absorption 𝛿 !

!!(𝒓)
 and 

of scattering 𝛿 !
!!"(𝒓)

 are smaller than the parameters of attenuation of the reference medium. 

Upon inserting Equations (16) into (15), it can be shown that the perturbation of the intensity in the 
coda can be written in the following linearized form: 

 

𝛿𝐼 𝒓; 𝒓𝟎; 𝑡 =    𝐾!(𝒓; 𝒓!; 𝒓𝟎; 𝑡) 𝛿
1

𝑄!(𝒓)
  𝑑𝒓! +    𝐾!"(𝒓; 𝒓!; 𝒓𝟎; 𝑡) 𝛿

1
𝑄!"(𝒓)

  𝑑𝒓!      (17)     

 
The complete derivation of Equation (17) can be found in Mayor et al. [2014] (see appendix 3). 
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Equation (17) expresses the perturbation of the intensity in the coda δI as a function of the 
perturbations of scattering and absorption, weighted by their sensitivity kernels denoted by Ksc and 
Ka, respectively. These two kernels depend on the positions of the source (r0), receiver (r), 
perturbation (r’) and on the lapse time t in the coda. We remind that Ksc and Ka quantify the 
perturbation of the detected intensity induced by a local perturbation of the propagation properties. 
These two kernels are themselves expressed as a convolution between two specific intensities which 
require the solution of two transport problems: one from the source to the perturbation and another 
from the receiver to the perturbation (the exact mathematical forms of Ka and Ksc are given in 
Mayor et al. [2014]). As is well known, the intensity that propagates in a scattering medium is 
composed of a coherent (or un-scattered) part and a diffuse (or incoherent) part. The word “diffuse” 
refers here to the intensity which has been scattered at least once in the medium. We thus have to 
consider four different paths from the source to the receiver through the perturbation to compute the 
total kernel: a coherent-coherent path, a coherent-diffuse path, a diffuse-coherent path and a diffuse-
diffuse path as illustrated in figure 16. These four possible combinations contribute to the total 
sensitivity in a different way, as will be discussed in the next section. 

The computation of the sensitivity kernels requires the knowledge of the Green’s function of the 
radiative transfer equation, including the full angular dependence of the specific intensity (Eq. 15). 
In this work, we consider a simplified physical situation: isotropic scattering (𝑝 𝒏,𝒏′ =1 in 
Eq.(15)) in two dimensions. From a more practical point of view, 2-D kernels may provide a first 
idea of the sensitivity of scattered surface waves to lateral variations of scattering and absorption 
properties. In this simple 2-D isotropic model, a closed-form expression for the Green’s function of 
the radiative transfer equation has been derived by Paasschens [1997], including the angular 
dependence required for our purposes. Armed with this analytical solution, we will examine the role 
of spatial variations of absorption first and we will then present the results for scattering. 
 

 
 
Figure 16: Schematic views of the different possible path to go from the source to the receiver 
through the perturbation: (a) coherent-coherent, (b) coherent-diffuse or diffuse-coherent and (c) 
diffuse-diffuse. The source, receiver and perturbation position vectors are denoted by r0, r and r’, 
respectively. We introduce non-dimensional Cartesian coordinates (𝑥,𝑦) expressed in l0 units, with 
𝑙! = 𝑐𝑄!"! /𝜔 the reference mean free path of the background medium. In this coordinate system, the 
source is located at (– 𝑆𝑅/2, 0) and the receiver at  (𝑆𝑅/2, 0). 
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4.3 Results 
 

In this subsection, we discuss the spatial pattern of the sensitivity kernels for absorption (Fig. 
17) and scattering (Fig. 18). The kernels are plotted using non-dimensional Cartesian coordinates 
x, y  expressed in l0 units, with l! = cQ!"! /ω the reference mean free path which described the 

characteristic length between two scattering events. Note that the kernels are normalized by the 
inverse of the scattering quality factor of the reference medium 1/𝑄!!!  because of this change of 
variable. Typically, l0 is of the order of 100 km in the continental crust whereas in volcanic areas 
where scattering is much stronger, l0 is of the order of 1 km. In Fig. 17 and 18, the source and the 
receiver (black dots) are located on the horizontal axis 𝑦=0 at 𝑥=±0.5, i.e. for an epicentral distance 
of the order of the reference mean free path l0. Kernels are plotted for three lapse times in the coda: 
the classical t=2tS (top) close to the S-wave arrival, t=3tS (middle) and t=4tS (bottom).  
The total kernel results from the summation of the four contributions discussed above. Figure 17 
and 18 show, from left to right, map views of the coherent-diffuse (Kcd), diffuse-diffuse (Kdd) and 
total kernels (Ka, Ksc). Note that the coherent-diffuse and the diffuse-coherent terms are both 
encapsulated in the coherent-diffuse contribution denoted by Kcd in these figures, because the paths 
are symmetric. The coherent-diffuse and diffuse-diffuse kernels have been calculated as follows: 
the region of the plane [-w, w] × [0, w] is discretized on a 2-D grid of dimension (2N+1) × (N+1) 
delimiting 2N × N pixels (N typically equal to 100), the value of the kernel is evaluated at the 
centre of each pixel and stored in a matrix. Using the symmetry of the kernel with respect to 
reflection across the horizontal axis, the complete map is obtained. To easily discuss the weight of 
the different contributions to the total sensitivity, the kernels have been normalized so that the 
absolute value of the total sensitivity equals 1 at the midpoint of the source-receiver path. The black 
ellipse delimits the causality domain (or the single scattering ellipse) outside which the kernels 
equal zero. To enhance the visibility of the kernels, the colour scale has been saturated. 

In the next paragraph, we propose to briefly discuss the spatial pattern of the sensitivity kernels 
and the relative contribution of Kcc, Kcd and Kdd to the total kernels (more details can be found in 
Mayor et al. [2014]). Note that if l0 ~100 km, the spatial and temporal scale used in Fig. 17 and 18 is 
typical of coda detection at local to regional distances. 
 

" Absorption kernel 
 

Let us first remark that the absorption kernels are negative because absorption removes energy 
from the system. Moreover, by contrast with the hypothesis of Xie & Mitchell [1990] previously 
discussed, the sensitivity is not homogeneously distributed inside the single-scattering ellipse. Note 
that, the contribution of the coherent-coherent contribution is not shown in Figure 17 because it 
only impacts the ballistic S-wave (see Mayor et al. [2014]). 
For a source-station distance of one mean free path and lapse times in the range [2tS-4tS], the total 
absorption kernel is dominated by the coherent-diffuse kernel. Kcd exhibits maximal sensitivity at 
the location of the source and station because all scattered wave paths have to propagate through a 
neighbourhood of these two points. The diffuse-diffuse term mainly adds some extra sensitivity in 
the bulk of the medium. Nevertheless, the zone of highest sensitivity in the total kernel is localized 
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around the direct ray connecting the source and receiver, which strongly suggests that local 
information on the absorption structure may be retrieved from the coda. It also justifies a posteriori 
our mapping strategy for Qc in the Alps. 

 
 

Figure 17: Colour maps of the absorption sensitivity kernels for source–station distance SR = l0, 
and propagation times t	   =	   2tS	   (top),	   t	   =	   3tS	   (middle)	   and	   t	   =	   4tS	   (bottom), with ts = τ0 the 
propagation time of ballistic waves. Left: coherent–diffuse term; Centre: diffuse–diffuse term; 
Right: total sensitivity kernel. On the horizontal and vertical axes, the distances are expressed in 
mean free path units. The black ellipse delimits the causality domain outside which the kernels 
equal zero. The black dots indicate the position of the source and station. The kernels have been 
normalized so that the absolute value of the total sensitivity equals 1 at the midpoint of the source-
receiver path. To enhance the visibility, the colour scale has been saturated. 
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" Scattering kernel 
 

Figure 18 illustrates that the scattering kernel is significantly more complex than its absorption 
counterpart, with notable zones of positive and negative sensitivity. The coherent-coherent 
contribution is only shown on the total sensitivity kernel. The sensitivity of the coherent-coherent 
term is concentrated on the causality ellipse (or single-scattering ellipse) and decays exponentially 
fast in the coda. It becomes completely negligible after a few tS. 

The coherent-diffuse contribution has an algebraic singularity at the source and the receiver. It 
exhibits an additional square-root type singularity in the vicinity of the single scattering ellipse from 
the inside. The coherent-diffuse kernel has a zone of negative sensitivity of typical width one mean 
free path along the direct ray connecting the source and station. Inside this area, an increase of the 
scattering strength results in a decrease of the intensity received in the coda: the extra-scattering 
deflects part of the energy which would have otherwise propagated from source to station. 
Conversely, an extra scattering event adds some probability for waves propagating in a direction 
opposite to the direct ray to be backscattered to the receiver and implies an increase of the intensity 
received in the coda. This gives rise to the lobes of high positive sensitivity visible in Figure 18.  

The diffuse-diffuse term provides some sensitivity to the variations of scattering strength in the 
bulk of the medium. It also exhibits a zone of negative sensitivity around the direct ray path. Indeed, 
at large lapse time, the diffuse-diffuse kernel depends on the scalar product between	   the	   energy	  
current	   vectors	  of	   two sources: one placed at the source, and the other (virtual) at the receiver. 
Clearly, this scalar product will be negative on the direct ray path because the energy fluxes of the 
two sources are in opposite directions at all times. Conversely, elsewhere on the source-receiver 
path, the energy flows away from the two sources in the same direction, hence the positive sign 
[Mayor et al., 2014].  

Figure 18 shows that the spatial pattern of the coherent-diffuse and total scattering kernels are 
very similar. The most clearly visible contribution of the diffuse-diffuse term is the broadening of 
the positive lobes of sensitivity, as well as some additional sensitivity in the bulk of the medium. 
Like in the case of absorption, we remark that at long lapse time in the coda, the total sensitivity is 
highest in a domain of width one mean free path going from source to station, but that there is some 
additional complexity due to the changes of sign of the kernel. 
 

4.4 Conclusion 
 

Our study of sensitivity functions for the intensity detected in the coda brings us to the 
following conclusions: (1) in the case of absorption, the sensitivity is maximal along the direct ray 
path connecting the source and station and diverges at these two points. A localized perturbation of 
absorption affects the overall decay of the coda in a manner which depends on the location of the 
anomaly with respect to the source and receiver; (2) in the case of scattering, the sensitivity has a 
much more complex structure. The scattering kernel displays a broad zone of strong negative 
sensitivity around the direct ray path and is positive elsewhere. In addition to the divergence at the 
source and station, the kernel is also singular on the single scattering ellipse and in its vicinity. 
Because of this intricate spatial pattern, a localized scattering anomaly has a complex signature in 
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the coda, and may entail a positive or negative variation of intensity depending on the lapse time. 
Local scattering and absorption perturbations have thus a distinct impact on the intensity received in 
the coda. These results suggest that a separation of scattering and absorption effects should be 
possible by modeling the spatio-temporal distribution of energy in the coda. 

 

 
Figure 18: Colour maps of the scattering sensitivity kernels for source–station distance SR = l0 and 
propagation times t = 2tS (top), t = 3tS (middle) and t = 4tS (bottom), with ts = τ0 the propagation 
time of ballistic waves. Left: coherent–diffuse term. Centre: diffuse–diffuse term. Right: total 
(including the coherent–coherent part). On the horizontal and vertical axes, the distances are 
expressed in mean free path units. The black ellipse delimits the causality domain outside which the 
kernels equal zero. The black dots indicate the position of the source and station. The kernels have 
been normalized so that the absolute value of the total equals 1 at the midpoint of the source-
receiver path. To enhance the visibility, the colour scale has been saturated. 
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Conclusions and Outlook 
 

The objective of my thesis is to estimate the contribution of intrinsic and scattering attenuation 
(Qi and Qsc) to the total attenuation of seismic waves. In this report, we have analyzed the rate of 
decay of the coda, described by the coda quality factor Qc, which is mostly sensitive to the intrinsic 
quality factor Qi at large lapse time. We have made a first step towards the development of a 
tomographic approach to map lateral variations of Qsc and Qi from the coda intensity analysis. 

In section 2, we have tested three different methods to estimate Qc. These three methods mainly 
differ in their domain of analysis (spectral or temporal) and in their statistical assumptions on the 
fluctuations of the coda envelope. After critical examination of the three methods, we have chosen 
to employ the simple but well adapted technique of Aki & Chouet [1975]. This method gives a 
rather good estimate of Qc in different frequency bands without any assumption on the frequency-
dependence of Qc.   

In section 3, we discussed the optimal choices of epicentral distance range (0-180 km) and coda 
window parameters (tw=70s, Lw=50s) to avoid biases due to the lapse time dependence of Qc. 
Then, we obtained preliminary maps of Qc for the Alps in four frequency bands ranging from 1 to 
16 Hz. These maps show that the typical scale of the spatial variations of Qc is of the order of 100 
km (Fig. 15), which suggests rapid lateral variations of attenuation properties in the crust. Qc maps 
delineate the main geological features such as the Appenines and the Po Valley with high 
attenuation, and the Upper Rhine Graben and Eastern Alps with low attenuation. 

In section 4, we have briefly described the theory underpinning our tomographic approach and 
we have detailed the spatiotemporal sensitivity of coda intensity to scattering and absorption 
anomalies. The perturbation of the detected intensity caused by a local perturbation of the 
propagation properties is quantified by the sensitivity kernels of absorption and scattering which 
have been computed in 2-D isotropic scattering media. We have seen that both absorption and 
scattering kernels have their sensitivity concentrated on the direct ray path connecting the source 
and station and diverge at these two points. The two kernels present sufficiently different structures 
to permit the mapping of lateral variations of scattering and absorption in the crust. However, a 
number of steps must be taken before we reach our goal.  
Concerning Qc maps and data analysis: 

(1) We will increase our dataset to improve the data coverage in the Alps and Metropolitan 
France for frequencies ranging from 1 to 32 Hz. Moreover, an adaptive mesh that 
homogenizes the ray path density should increase the level of details of our Qc maps in 
regions with a high density of source and station. 

(2) We plan to explore more deeply the lapse time dependence of Qc in order to estimate the 
scattering anisotropy (and its possible lateral variations) following the work of Calvet & 
Margerin (2013). 

Concerning the sensitivity kernels: 
(1) The limits of validity of the perturbation theory adopted in our work should be established. 

This question will be addressed with the aid of Monte Carlo simulations to solve the 
radiative transfer equation in laterally varying scattering and absorbing media.  

(2) Another important issue is to develop specific sensitivity kernels for other seismic 
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observables such as the peak delay time and the coda quality factor. During my PhD, I plan 
to develop the sensitivity kernels for Qc. 

(3) Scattering anisotropy may play an important role in the observed spatio-temporal 
dependence of the coda envelope (Calvet & Margerin [2013]). Future works should take into 
account scattering anisotropy in the computation of the kernels. Because the calculation of 
the full angular dependence of the specific intensity required for our purposes is still 
challenging, we have first adhered to the simple isotropic scattering approximation which 
hopefully captures the essential features of the sensitivity.  

(4) Finally, future works should also address the possible role of depth-dependent attenuation 
structures, which calls for the development of 3-D sensitivity kernels. 
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Appendix 2 
 
Oral presentation: European Geosciences Union General Assembly 2014, 29 April to 2 May 2014, 
in Vienna (Austria). 
Oral session: Seismic Monitoring and Modeling of Earth’s Property Changes 
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Sensitivity of coda waves to lateral variations of absorption and

scattering: radiative transfer theory and 2-D examples

Jessie Mayor, Ludovic Margerin, and Marie Calvet
IRAP, CNRS, Université de Toulouse, France

We investigate the impact of lateral variations of absorption and scattering properties on the energy envelopes
of coda waves. To model the spatio-temporal distribution of seismic energy, we employ a scalar version of
the radiative transfer equation with spatially-dependent absorption and scattering quality factor. The scattering
pattern which describes the angular distribution of energy upon scattering is assumed to be statistically isotropic,
independent of position, but otherwise arbitrary. Further assuming that the lateral variations of the governing
parameters are sufficiently weak, we employ perturbation theory to derive linearized relations between the
absorption/scattering properties of the medium and the intensity detected in the coda. These relations take the form
of weighted integrals where so-called scattering/absorption sensitivity kernels play the role of weighting function.
The kernels depend on the type of perturbation (scattering or absorption), the lapse time in the coda, and require
the knowledge of the complete angular dependence of the specific intensity describing the flow of energy in a
given direction at a given location. In the long lapse-time limit, we establish simplified formulas which depend
on the first two angular moments of the specific intensity only. As an illustration of the theory, we calculate the
absorption and scattering sensitivity kernels in a 2-D isotropically scattering medium at different lapse times in the
coda, and discuss their singularities in detail. The sensitivity kernels are then employed to calculate the relative
intensity variations of the coda caused by a localized Gaussian absorption/scattering anomaly. We find that the
dominant effect of absorption anomalies is to modify the decay rate of the coda, while scattering anomalies have a
more complex signature, causing either positive or negative deflection of the energy envelope, depending on their
location and on the lapse time. Our results suggest the possibility to locate and discriminate between scattering
and absorption anomalies from the energy envelope of coda waves.
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Appendix 3 
 

Paper published in Geophysical Journal International (vol: 197, 1117-1137) Sensitivity of coda 
waves to spatial variations of absorption and scattering: radiative transfer theory and 2-D examples 
 
Authors: Jessie Mayor, Ludovic Margerin and Marie Calvet 
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Sensitivity of coda waves to spatial variations of absorption and
scattering: radiative transfer theory and 2-D examples

Jessie Mayor, Ludovic Margerin and Marie Calvet
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S U M M A R Y
We investigate the impact of spatial variations of absorption and scattering properties on the
energy envelopes of coda waves. To model the spatiotemporal distribution of seismic energy, we
employ a scalar version of the radiative transfer equation with spatially dependent absorption
and scattering quality factor. The scattering pattern which describes the angular distribution
of energy upon scattering is assumed to be statistically isotropic, independent of position, but
otherwise arbitrary. Further assuming that the spatial variations of the governing parameters
are sufficiently weak, we employ perturbation theory to derive linearized relations between
the absorption/scattering properties of the medium and the intensity detected in the coda.
These relations take the form of weighted integrals where so-called scattering/absorption
sensitivity kernels play the role of weighting function. The kernels depend on the type of
perturbation (scattering or absorption), the lapse-time in the coda, and require the knowledge
of the complete angular dependence of the specific intensity describing the flow of energy
in a given direction at a given location. In the long lapse-time limit, we establish simplified
formulae which depend on the first two angular moments of the specific intensity only. As
an illustration of the theory, we calculate the absorption and scattering sensitivity kernels
in a 2-D isotropically scattering medium at different lapse-times in the coda, and discuss
their singularities in detail. The sensitivity kernels are then employed to calculate the relative
intensity variations of the coda caused by a localized Gaussian absorption/scattering anomaly.
We find that the dominant effect of absorption anomalies is to modify the decay rate of the
coda, while scattering anomalies have a more complex signature, causing either positive or
negative deflection of the energy envelope, depending on their location and the lapse-time. Our
results suggest the possibility to locate and discriminate between scattering and absorption
anomalies from the energy envelope of coda waves.

Key words: Coda waves; Theoretical seismology; Wave scattering and diffraction.

1 I N T RO D U C T I O N

With the rapid development of dense seismic networks in the last
20 yr, it has become clear that the attenuation structure of the
lithosphere is not spatially homogeneous. High-frequency (>1 Hz)
seismic waves have been particularly useful to detect propagation
anomalies associated with spatial variations of scattering and ab-
sorption properties. The strength of these anomalies may be quan-
tified by simple measurements. One example is the peak delay time
of shear waves, defined as the time difference between the onset
of shear waves and the maximum of the seismogram envelope. As
shown by Obara & Sato (1995), this observable reflects primarily
the scattering properties of the medium, strong scattering being as-
sociated with significant broadening of the seismogram envelope.
A remarkable example has been provided by Takahashi et al. (2007)

who showed that the peak delay time increases drastically when the
direct S-wave path between source and station intersects the qua-
ternary volcanoes in northern Japan. Strong scattering associated
with small-scale heterogeneities is the primary explanation for the
observed broadening of the seismogram envelope in this case.

The coda quality factor Qc, which quantifies the decay rate of
scattered arrivals forming the coda of local earthquakes (Aki &
Chouet 1975), is yet another easily accessible parameter which
contains information on the attenuation structure of the lithosphere.
Although the physical interpretation of Qc is still debated (Hoshiba
1991; Gusev 1995; Margerin et al. 1999; Calvet & Margerin 2013),
this parameter is known to depend on the scattering and/or ab-
sorption quality factors of the medium, and displays clear lateral
variations at the continental scale (Singh & Herrmann 1983; Jin &
Aki 1988). In a recent study, Carcolé & Sato (2010) have provided

C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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maps of Qc for Japan revealing the spatial variations of this param-
eter with an unprecedented level of details. They also found that
the spatial dependence of Qc is very well correlated with fine-scale
lateral variations of the intrinsic quality factor of shear waves de-
duced from radiative transfer modelling of the space–time energy
distribution in the coda.

In a completely different geological context, Calvet et al. (2013)
have mapped sharp lateral variations of Qc and of the peak de-
lay time along the Pyrenean range. The western part of the Pyre-
nees, where the broadening of the seismogram envelope of local
earthquake is particularly large, is also characterized seismically
by a blockage of the Lg waves (Chazalon et al. 1993). The lat-
ter phenomenon has been successfully explained by the presence
of a localized zone of enhanced scattering and absorption, which
might be explained geologically by the mixing of sedimentary and
mantle rocks during the formation of the range (Sens-Schönfelder
et al. 2009). From these recent observations, we conjecture that
spatial variations of scattering and absorption in the lithosphere are
ubiquitous and may provide meaningful information on the local
geological structure. From our ability to provide high resolution,
accurate maps of scattering and absorption will depend to a large
extent the possibility to better delineate interesting geological fea-
tures, possibly not seen by other geophysical methods.

The purpose of the present work is to provide a simple theo-
retical framework to calculate the impact of local perturbations of
scattering and absorption properties on the energy envelopes of
seismograms. To achieve this goal, we will follow the classical to-
mographic approach as summarized by Nolet (2008) and derive
linearized relations between a given seismic observable—the inten-
sity in the coda (e.g.)—and the governing physical parameters—the
scattering and absorption times (or quality factors). These relations
take the form of space integrals and depend, in turn, on a so-called
sensitivity kernel which quantifies the perturbation of the detected
intensity induced by a local perturbation of the propagation prop-
erties. Because coda waves are composed primarily of scattered
waves, radiative transfer theory will be used as the basic physical
model to derive the sensitivity kernels. To clarify our angle of attack
and see how it differs from previous investigations, it is worthwhile
to summarize briefly the tools developed by seismologists to map
the scattering and absorption properties in the lithosphere. While
some approaches make use of the spatiotemporal distribution of the
energy in the coda, others focus more specifically on the peak delay
time of shear waves. We will begin by reviewing the latter first.

Using a multiple low-angle scattering approach, Gusev &
Abubakirov (1999a) showed that the peak delay time of S wave
may be approximated by a line integral of the effective turbidity
weighted by a simple function of the curvilinear abscissa along the
ray path connecting the source to the station. We recall that the
inverse effective turbidity, also known as the transport mean free
path quantifies the typical distance after which a beam of energy
has lost memory of its initial direction of propagation in a random
inhomogeneous medium. This parameter controls the broadening of
seismogram envelopes and also shows up in the diffusion constant
of multiply scattered waves. The simplicity of the sensitivity ker-
nel, which consists of a (weighted) delta function along the direct
ray, is an attractive feature of this method. The approach of Gusev
& Abubakirov (1999a) has been supported by numerical simula-
tions of the radiative transfer equation, and applied to data from
Kamtchatka to obtain a vertical profile of effective turbidity (Gusev
& Abubakirov 1999b). From this study, the authors inferred a large
contrast of turbidity between crust and mantle, the latter being much
more transparent than the former.

A different approach to the peak delay time is provided by the
Markov approximation, which is yet another form of multiple for-
ward scattering model. It can be derived by appropriate ensemble
averaging techniques from the parabolic wave equation and assumes
that the waves propagate mostly in the forward direction on their
way from source to station (Sato 1989; Saito et al. 2002). This
sophisticated model is particularly attractive because it provides
constraints on the power spectrum of heterogeneities, which quan-
tifies the distribution of velocity fluctuations over different scale
lengths. In particular, by combining observations of the peak delay
time in different frequency bands, it is possible to infer the richness
in small-scale heterogeneities of the propagation medium. It should
be noted that reasonable guesses for the correlation distance and
frequency dependence of the intrinsic quality factor are necessary
to actually determine the power spectrum from the observed peak
delay times. Once these quantities have been fixed, all the parame-
ters that quantify the scattering such as the effective turbidity can
be calculated exactly. It can therefore be considered as a method to
map the scattering properties of the medium, although the relation
is not direct. As remarked above, the peak delay time may also
be influenced by the 3-D absorption structure, which may bias the
estimate of the scattering parameters in certain circumstances. Us-
ing a recursive formula for the peak delay time in laterally varying
random media derived by Takahashi et al. (2008), Takahashi et al.
(2009) developed a new inversion scheme validated by numerical
simulations and obtained detailed maps of the heterogeneity power
spectrum in North-Eastern Japan for three depth ranges (0–20, 20–
40 and 40–60 km). In this approach, the sensitivity is concentrated
along the direct ray path connecting the source to the station. Let us
emphasize again that the end result—a map of the spatial variations
of the heterogeneity power spectrum—contains rich information on
the statistical properties of the heterogeneities. More recently, an
improved version of this tomographic method has been applied by
Takahashi et al. (2011) to the mapping of inhomogeneities in the
northern Izu-Bonin arc.

We pursue our overview of general approaches to map the atten-
uation properties of the lithosphere by considering techniques that
exploit the coda of the seismogram. Nishigami (1991) devised a
method to invert for the scattering properties of the lithosphere by
considering the deviation of individual envelope records from a mas-
ter curve. The master curve is obtained by fitting the overall decay
of the coda of local earthquakes with a simple algebro-exponential
formula of the form t−2e−αt , and is supposed to represent ade-
quately the average scattering properties of the region under study.
The observed intensity residuals between the reference curve and
the data are interpreted in terms of a 3-D scattering structure, which
implicitly assumes that the intrinsic quality factor is spatially homo-
geneous. To map the scattering properties, Nishigami (1991) further
assumes that scattering is isotropic and that the coda is dominated
by singly scattered waves. This, in turn, implies that the sensitiv-
ity is concentrated on revolution ellipsoids with foci located at the
source and station and great axis ct, with t the lapse-time in the
coda. By considering a sufficiently large number of station pairs
and different time windows in the coda, it is then possible to in-
fer the 3-D perturbations of the turbidity (inverse mean free path).
This method has been applied by Nishigami (2000) to unravel the
complex pattern of heterogeneity around the San-Andreas fault.
An extension to elastic waves that uses dense seismic arrays and
the polarization information has later been proposed by Taira &
Yomogida (2007) and applied by Taira et al. (2007) to image crustal
heterogeneities around the Nagamachi-Rifu fault in Japan. There
are yet other methods which map scatterers in the lithosphere using
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Coda waves sensitivity kernels 3

more deterministic models of wave propagation (see, e.g. Bostock
& Rondenay 1999), but they will not be discussed in this paper
because our approach is inherently stochastic.

Xie & Mitchell (1990) developed a method to map lateral varia-
tions of Q at the continental scale using measurements of the coda
quality factor of Lg waves QLg

c . In their approach, the spectral stack-
ing technique of Xie & Nuttli (1988) is applied to the whole Lg coda
to reduce the data variance and obtain reliable QLg

c measurements.
It is also assumed that these measurements are representative of
the total Q of the Lg wavetrain QLg. The target region is divided
up into cells where QLg is assumed to be constant. For a given
source station configuration and maximum lapse-time in the coda
tmax, a single-scattering ellipse with its foci at the location of the
source and station and great axis ctmax (c the average shear wave
velocity in the crust) is constructed at the surface of the Earth. The
contribution of each particular cell to a given QLg

c measurement is
taken proportional to the intersection area between the ellipse and
the cell. In other words, the sensitivity of Lg coda waves is sup-
posed to be homogeneously distributed inside the single-scattering
ellipse. Because the typical maximal lapse-time tmax is of the order
of 300 s, the lateral resolution of the derived Q maps is of the order
of 1000 km. This technique has been applied in various regions of
the world to obtain maps of QLg, which have been interpreted in
terms of geological and tectonic activity, as summarized in Mitchell
(1995) and Mitchell & Cong (1998).

Note that the approach of Xie & Mitchell (1990) does not distin-
guish between scattering and absorption quality factors and there-
fore provides constraints on the total Q only. Let us also remark
that both Nishigami’s method and peak delay time tomography rely
on the strong assumption that absorption is either homogeneous
or negligible with respect to scattering. Clearly, peak delay maps
are not completely independent from the lateral variation of Qi. A
strong absorption anomaly may significantly shift the maximum of
the seismogram envelope towards short lapse-time and be misinter-
preted as a low turbidity anomaly. Analogous biases are expected
in the approach of Nishigami. This motivates the developments of
methods capable of separating scattering from absorption.

Although it cannot be considered as a genuine tomographic
method, the multiple lapse time window analysis (MLTWA) is worth
mentioning in this short review because it is the only method that
allows separation of scattering from absorption (Fehler et al. 1992;
Hoshiba 1993). In this approach, the spatial distribution of energy
in the coda is estimated in three consecutive time windows. Their
duration is typically of the order of 15 s and the first window in-
cludes the ballistic pulse propagating between source and station.
The spatiotemporal energy distribution is modelled using the ra-
diative transfer equation for isotropic scattering which allows the
retrieval of the scattering mean free path and absorption length in the
medium as a function of frequency. By appropriately regionalizing
the data, it is possible to obtain maps of scattering and absorption
parameters as illustrated in the paper of Carcolé & Sato (2010)
for Japan. The modelling procedure developed in the next section
combines the basic idea of Nishigami (1991) with the theoretical
approach underpinning the MLTWA.

2 T H E O RY

2.1 Overview of theoretical approaches

In this section, we aim at predicting the perturbation of inten-
sity induced by general (weak) spatial variations of scattering and

absorption properties superposed upon a homogeneously scattering
and absorbing background. This is a problem of general interest
which has received considerable attention in other fields of physics.
It is therefore worthwhile to give an overview of the methods which
have been proposed in the past to calculate intensity perturbations
in non-homogeneous scattering and absorbing media to place our
work in an interdisciplinary context.

A general framework to calculate the perturbation of intensity
caused by a local variation of scattering/absorption properties is
provided by the diagram method. A detailed exposition of diagram-
matic expansions goes well beyond the scope of this paper. The
interested reader is referred to the review article by van Rossum &
Nieuwenhuizen (1999). In seismology, this method has been em-
ployed to calculate the multiple scattering of seismic waves using
local coupled-modes (Park & Odom 2005) or the diffusion of cou-
pled P and S waves (Margerin 2013). The idea of the method is to
represent a change of scattering/absorption properties by the addi-
tion (or subtraction) of a single scatterer/absorber (Nieuwenhuizen
& van Rossum 1993). This technique is very general and can be used
to calculate intensity perturbations, but also more general quantities
such as the two-point correlation function of the wavefield. Pioneer-
ing works have been done using this approach by Feng & Sornette
(1991) in the field of acoustical, non-destructive evaluation of het-
erogeneous media, and by Nieuwenhuizen & van Rossum (1993) in
the field of optics of dense media.

Because the exact evaluation of diagrams is a difficult task, one
generally assumes that the spatiotemporal distribution of the en-
ergy inside the medium is smooth, which considerably simplifies
the calculations. When the smoothness condition applies, a dif-
fusion equation can be employed to describe the propagation of
energy in the medium, which offers a less general but much more
straightforward way of calculating the perturbation of intensity in
a non-homogeneous scattering/absorbing medium. This approach
has particularly been well developed in the field of optical tomog-
raphy applied to medical imaging, where the mapping of absorp-
tion and scattering coefficients of infrared light inside the human
body is a central question. In this field, linearized relations between
the detected intensity and spatial variations of propagation proper-
ties have been derived in the diffusion approximation in the early
nineties by Arridge et al. (1991). The kernel of the linear oper-
ator relating the medium perturbations to the measurements has
been termed ‘photon measurement density function’, or ‘sensitivity
function’ in short (Arridge 1995). Detailed derivations of stationary,
frequency-dependent and time-dependent sensitivity functions for
optical tomography in the diffusion approximation can be found in
the review article by Arridge (1999).

While the diffusion approximation usually performs extremely
well in medical imaging, it is generally a rather poor approximation
to the propagation of high-frequency seismic waves in the crust
at the notable exception of volcanic areas (Wegler & Lühr 2001;
Wegler 2004). Even in the latter context, it is not possible to
completely neglect the energy transported by the coherent wave,
which is not described by the diffusion approximation. Coher-
ent propagation plays an important role because seismic sources
are embedded inside the target medium. Hence, perturbations of
scattering/absorption properties which are located at less than one
mean free path from the source (or receiver) can interact with the
coherent wave and leave an imprint in the coda. This point will be
clearly illustrated in Section 3. Radiative transfer provides a general
framework to model simultaneously the coherent and incoherent
(or diffuse) parts of the high-frequency seismic wavefield and has
also been introduced in medical imaging to model the propagation
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4 J. Mayor, L. Margerin and M. Calvet

of photons in the most weakly scattering parts of the human body.
Dorn (1998, 2000) has derived theoretical expressions for the sen-
sitivity functions of diffuse optical tomography using an adjoint
formalism for the time-dependent radiative transfer equation. His
results are tailored to the experimental conditions encountered in
medical imaging, and are therefore not directly applicable to seis-
mology. In this work, we employ a straightforward Green’s function
method to derive sensitivity functions adapted to our purposes. In
particular, we take into account the fact that the sources and re-
ceivers are point-like, omni-directional and embedded inside the
propagation medium. Another notable difference between our ap-
proach and the one usually adopted in diffuse optical tomography
lies in the fact that we treat explicitly the role of the coherent wave.
Using the solution of the time-dependent solution of the equation
of transfer derived by Paasschens (1997), this allows us to study an-
alytically the singularities of our sensitivity functions (see the next
section). The correct handling of these singularities is of particular
importance in the seismological context as we demonstrate below.

2.2 Transport theory

To model the transport of energy in a scattering and absorbing
medium, we introduce the radiative transfer equation satisfied by
the specific intensity I (r, n̂, t):

(∂t + cn̂ · ∇) I (r, n̂, t) = −
(

1

τ (r)
+ 1

t a(r)

)
I (r, n̂, t) + 1

τ (r)

×
∫
Sd

p(n̂, n̂′)I (r, n̂′, t)dn̂′ + S(r, n̂, t).

(1)

The specific intensity quantifies the flux of energy directed around
the unit vector n̂ at point r and time t in a scattering medium. In
this work, we consider only infinite 2-D or 3-D random media with
constant background velocity c, and assume that I (r, n̂, t) = 0 for t
< 0. The quantity τ (r) denotes the spatially varying mean free time
which controls the strength of the scattering in the heterogeneous
medium. It is related to the more familiar scattering quality factor by
the formula Qsc(r) = ωτ (r). In the case of statistical homogeneity,
the mean free time is exactly equal to the mean time between two
scattering events. The absorption time t a(r) controls the rate at which
energy is locally dissipated due to anelastic phenomena, and is
related to the intrinsic quality factor by the formula Qi(r) = ωt a(r).
Scattering anisotropy is described by the phase function p(n̂, n̂′),
which gives the probability that energy propagating in direction
n̂′ be deflected into direction n̂. The phase function should obey
the reciprocity relation p(n̂, n̂′) = p(−n̂′, −n̂) and, in the case of
a rotationally invariant medium, is of the form p(n̂ · n̂′). Possible
spatial variations of the scattering pattern will be ignored in this
paper. The source of energy is encapsulated in the term S(r, n̂, t)
which describes the flux injected in the medium in direction n̂ at
point r and time t. Finally, the symbol

∫
Sd dn̂′ denotes an integral

over the unit sphere of space directions in d-dimensional space
(d = 2, 3).

Eq. (1) can be deduced at the phenomenological level from a local
balance of energy as described in several treatises (Chandrasekhar
1960; Apresyan & Kravtsov 1996) and review articles (Margerin
2005). Mathematically sound derivations of the transport equations
for a variety of wave phenomena can be found in the paper by
Ryzhik et al. (1996). In seismology, radiative transfer has become

a standard tool to model the propagation of short-period seismic
waves as reviewed in the book by Sato et al. (2012).

Following Case (1969), we introduce the Green’s function of
the radiative transfer equation, which physically corresponds to the
intensity response to a point-like, uni-directional and instantaneous
release of energy in the scattering and absorbing medium. This
Green’s function will be denoted by G(r, n̂; r′, n̂′; t) and is the
solution to eq. (1) for the source term:

S(r, n̂, t) = δ(r − r0)δ(n̂ − n̂0)δ(t), (2)

where δ denotes the usual Dirac delta function. Some key properties
of the Green’s functions will be useful for our purposes. (1) The
first one pertains to non-absorbing media only and is a simple refor-
mulation of the energy conservation law which underlies transport
theory:∫
Rd

∫
Sd

G(r, n̂; r0, n̂0; t)drdn̂ = 1, (3)

where the symbol
∫

Rd denotes an integral over d-dimensional space.
(2) The reciprocity theorem of transport theory takes the form:

G(r0, −n̂0; r, −n̂; t) = G(r, n̂; r0, n̂0; t). (4)

Note the reversal of the directions of propagation n̂ and n̂0 in this
equation, reminiscent of the symmetry of the phase function in a
reciprocal medium. (3) The formal solution to the boundary value
problem of transport theory, that is, the solution to eq. (1) for a
smooth source term S may be expressed as

I (r, n̂, t) =
∫
Rd

∫
Sd

∫ t

0
G(r, n̂; r′, n̂′; t − t ′)S(r′, n̂′; t ′) dr ′ dn̂′ dt ′.

(5)

The interested reader is referred to Case (1969) for a derivation of
these formulae and applications of the Green’s function formalism
in transport theory. Note that the solution (5) tends to 0 in the limit
t → 0+. Hence, if the boundary value problem is supplemented with
the initial condition I (r, n̂, 0+) = I ic(r, n̂), the term

I(r, n̂, t) =
∫
Rd

∫
Sd

G(r, n̂; r′, n̂′; t)I ic(r′, n̂′) dr ′ dn̂′ (6)

must be added to (5) to match the distribution of intensity at t
= 0+. The Green’s function therefore propagates the system from
its initial state to an arbitrary time t. Let us finally remark that
if the Green’s function of the transport equation is known in an
absorption-free medium, the case of uniform absorption time t a

0

is immediately obtained by multiplying this Green’s function by a
factor e−t/ta

0 , as can be verified from the transport equation (1). The
energy conservation law must be amended accordingly.

2.3 Derivation of the sensitivity kernels

We now assume that ‘spatial’ variations of absorption and scat-
tering properties are superposed upon a statistically homogeneous
background with mean free time τ 0 and absorption time t a

0 and
write:

1

τ (r)
= 1

τ0
+ δ

(
1

τ (r)

)
, (7a)

1

t a(r)
= 1

t a
0

+ δ

(
1

t a(r)

)
. (7b)
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Coda waves sensitivity kernels 5

The weak perturbation condition demands in addition that

δ(1/τ (r)), δ(1/t a(r)) � 1/τ0, 1/t a
0 . (8)

Note that in our paper, the symbol δ does double duty. It represents
either the Dirac delta function or the perturbation of a physical quan-
tity. The correct interpretation should be clear from the context. Let
us denote by G0(r, n̂; r0, n̂0; t) the Green’s function of the transport
equation in the reference medium with parameters τ 0 and t a

0 . Upon
inserting the decomposition (7a)–(7b) into eq. (1), collecting all
perturbative terms on the right-hand side, and applying the repre-
sentation theorem (5), we obtain the following integral equation for
the Green’s function of the laterally varying medium:

G(r, n̂; r0, n̂0; t) = G0(r, n̂; r0, n̂0; t)

+
∫∫∫ t

0
G0(r, n̂; r′, n̂′; t − t ′)δ

(
1

t a(r′)

)

× G(r′, n̂′; r0, n̂0; t ′) dn̂′ dt ′ dr ′

+
∫∫∫ t

0
G0(r, n̂; r′, n̂′; t − t ′)δ

(
1

τ (r′)

)

×
[ ∫

p(n̂′, n̂′′)G(r′, n̂′′; r0, n̂0; t ′) dn′′

− G(r′, n̂′; r0, n̂0; t ′)
]

dn̂′ dt ′ dr ′. (9)

Note that unless indicated, the spatial and angular domains of inte-
gration cover the full space and the whole sphere of directions,
respectively. The limits of the time integrals will be specified
throughout the paper. The formally exact eq. (9) will now be
approximated and manipulated to obtain the desired sensitivity ker-
nels of coda waves. (1) Following the standard idea of perturbation
theory, we assume that the overall impact of the spatial variations of
scattering and absorption is small, and therefore substitute G with
G0 in the right-hand side of eq. (9). This procedure is equivalent to
the first-Born approximation in wave propagation problems (Rytov
et al. 1989; Sato et al. 2012). It can also be seen as the first term of
the Neumann series solution to integral equation (9). (2) Consider-
ing the double couple radiation pattern of earthquakes and the usual
average over sources performed experimentally, it seems appropri-
ate to integrate over n̂0 to simulate an omni-directional point source.
We will denote by I (r, n̂; r0; t) the outcome of this operation applied
to the Green’s function G(r, n̂; r0, n̂0; t), after normalization by the
area Sd of the unit sphere in space dimension d. Similar definitions
apply to I0 and G0. In 2-D, the function I0(r, n̂; r0; t) is known
analytically in the case of isotropic scattering (Paasschens 1997),
which is important for the applications of the theory developed in
the next section. (4) Since seismic sensors are omni-directional, a
final integration over n̂ (without normalization) is likewise required
to model seismic records. This operation yields the total intensities
I (r; r0; t) (or I0(r; r0; t) ) radiated by the unit source. After apply-
ing steps (1)–(4) to eq. (9), as well as the reciprocity theorem (4),
we obtain the perturbation of intensity in the coda in the desired
linearized form:

δ I (r; r0; t) =
∫

K a(r; r′; r0; t)δ

(
1

t a(r′)

)
dr ′

+
∫

K sc(r; r′; r0; t)δ

(
1

τ (r′)

)
dr ′, (10)

eq. (10) introduces the following absorption and scattering sensi-
tivity kernels:

K a(r; r′; r0; t) = −Sd

∫∫ t

0
I0(r′, −n̂′; r; t − t ′)I0(r′, n̂′; r0; t ′) dn̂′dt ′

(11)

K sc(r; r′; r0; t) = Sd

∫∫ t

0
I0(r′, −n̂′; r; t − t ′)

×
[ ∫

p(n̂′, n̂′′)I0(r′, n̂′′; r0; t ′) dn̂′′

− I0(r′, n̂′; r0; t ′)
]

dn̂′dt ′. (12)

These kernels depend on the positions of the source, receiver, pertur-
bation and on the lapse-time in the coda. Their calculation requires
the knowledge of the full intensity distribution, including its angu-
lar part. A physical interpretation is that in a scattering medium,
the description of all possible paths from source to receiver going
once through an elementary volume dr′ located at r′ requires the
knowledge of the geometry of the paths, which is encapsulated in
the angular dependence of the specific intensity. This point will be
further clarified when we consider specific applications of formu-
lae (11)–(12). Let us remark that the calculation of the sensitivity
kernel requires the solution of two transport problems: one from the
source to the perturbation and another from the receiver to the per-
turbation. Although we have not employed the adjoint formalism,
the concept of transport–backtransport transpires in formulae (11)–
(12) (see Dorn 2000, for details). Let us finally remark that if the
phase function is isotropic, the kernel for scattering perturbations
may be decomposed as

K sc(r; r′; r0; t) = K iso(r; r′; r0; t) + K a(r; r′; r0; t), (13)

where the kernel K iso is defined as

K iso(r; r′; r0; t) =
∫ t

0
I0(r; r′; t − t ′)I0(r′; r0; t ′) dt ′. (14)

Up to the normalization factor I0(r; r0; t), formula (14) has already
surfaced in the literature, in the context of monitoring temporal
variations from coda waves (Pacheco & Snieder 2005; Larose et al.
2010; Obermann et al. 2013; Planès et al. 2014). The validity of for-
mula (14) (after proper normalization) to extract apparent velocity
changes in an evolving medium will be discussed in Section 5.

2.4 Basic properties of the kernels

Since absorption removes energy from the system, the kernel K a

must be negative as is trivially verified from eq. (11). This kernel
also satisfies the following sum rule:

1

t

∫
K a(r; r′; r0; t)dr ′ = − Sd

t

∫∫∫ t

0
I0(r′, −n̂′; r; t − t ′)

× I0(r′, n̂′; r0; t ′) dn̂′ dt ′dr ′

= −1

t

∫ t

0
dt ′

∫∫∫
G0(r, n̂′′; r′, n̂′; t − t ′)

× I0(r′, n̂′; r0; t ′) dn̂′ dn̂′′ dr ′

= −I0(r; r0; t), (15)

which follows from eq. (6), the time invariance of the system and the
uniqueness of the solution to the transport equation. The plausibility
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6 J. Mayor, L. Margerin and M. Calvet

of this result can be attested physically by the following thought ex-
periment: consider an isotropic source which injects energy into
the reference medium at point r0 and time t = 0; suppose we can
stop the time evolution at an arbitrary time t′ < t and measure the
specific intensity at every point of the medium; imagine we can
restart the experiment and use as initial condition the measured
intensity distribution I (r′, n̂′; r0; t ′) (no additional source); let the
system evolve during t − t′ and measure the total intensity at every
point. The outcome of this experiment should be independent of t′,
and give the same result as a measurement at time t of the intensity
field radiated by the isotropic point source acting at r0 and time
t = 0 (last line of eq. 15). The stop/restart process is expressed
mathematically by the triple integral in the second line of eq. (15).
In more mathematical words, this sum rule follows from the semi-
group structure of the radiative transfer equation (Preisendorfer
1957). As an application of eq. (15), let us consider the addition
of a uniform, weak perturbation of absorption δ(1/t a) to the ref-
erence medium. Using eqs (10) and (15), we immediately deduce
I = I0(1 − tδ(1/t a)) ≈ I0e−δ(1/ta)t , as expected. The relation (15)
will also be useful to test the numerical implementation of the ker-
nels, as discussed in the next section.

We now deduce an important sum rule for the scattering sensi-
tivity kernel from the conservation of energy in transport theory.
Upon integration of K sc over all detection points r and application
of eq. (3), one obtains:∫

K sc(r; r′; r0; t) dr = 0. (16)

Eq. (16) demonstrates that the application of first-order perturba-
tion theory to the transport equation conserves energy. Note that
this sum rule does not apply in the case of a finite medium with
absorbing boundary condition like in diffuse optical tomography,
because energy leaks out of the medium in this case. The result
(16) is in sharp contrast with the first-order Born approximation in
wave propagation problems, which is known to violate the energy
conservation law. A different sum-rule is obtained when we con-
sider a spatially homogeneous change of the inverse scattering time
δ(1/τ ). Such a change entails a perturbation of the intensity which
may be calculated in two ways: (1) by integrating the scattering
sensitivity kernel over all possible locations of the perturbation and
(2) by substituting 1/τ 0 with 1/τ 0 + δ(1/τ ) in the Green’s function
I0(r; r0; t) and using a Taylor expansion. Equating the results of
methods (1) and (2) yields:∫

K sc(r; r′; r0; t) dr ′ = ∂ I0(r; r0; t)

∂τ−1
, (17)

where the dependence of I0 on τ is implicit. An application of this
sum rule will be given in the next section. Note that the same method
applied to a perturbation of absorption yields eq. (15) again.

2.5 Large lapse-time asymptotics

In the limit of long lapse-time, it is possible to make supplementary
assumptions on the angular dependence of the intensity which allow
further simplifications of eqs (11)–(12). Because scattering tends to
homogenize the distribution of energy in phase space, the specific
intensity may be expanded in terms of its first two angular moments
as follows (see, e.g. Akkermans & Montambaux 2007):

I0(r, n̂; r0; t) = 1

Sd

[
I0(r; r0; t) + dJ0(r; r0; t) · n̂

]
, (18)

where we have introduced the current vector:

J0(r; r0; t) =
∫

Sd
I0(r, n̂; r0; t)n̂ dn̂. (19)

On the right-hand side of eq. (18), the first term represents the
angular average of the intensity and the second is a small correction
to isotropy (J0 � I0) describing the diffusive transport of intensity
in space dimension d. Reporting the expansion (18) into eq. (11)
and retaining the leading term only, we obtain:

lim
t→+∞

K a(r; r′; r0; t) = −
∫ t

0
I0(r; r′; t − t ′)I0(r′; r0; t ′) dt ′. (20)

An alternative derivation of this result based on a diffusion model
for the propagation of energy in the medium is outlined in
Appendix A.

To derive the long lapse-time asymptotics of the scattering kernel,
we proceed as above and insert eq. (18) into eq. (12). It can be seen
that all terms containing the mean intensity cancel out, leaving only
one term containing the product of two current vectors:

lim
t→+∞

K sc(r; r′; r0; t)=d(1−g)
∫ t

0
J0(r′; r; t − t ′) · J0(r′; r0; t ′) dt ′,

(21)

where g denotes the mean cosine of the scattering angle, defined as

g =
∫

Sd
p(n̂ · n̂′)n̂ · n̂′dn̂. (22)

Note that we have assumed that the medium is statistically isotropic
in the definition of g. As shown in Appendix A, the formulae (20)–
(21) may also be established by application of first-order pertur-
bation theory to the diffusion equation. The interested reader is
referred to Arridge (1995, 1999) for further details. Because at long
lapse-time, the current vector is supposed to be much smaller than
the mean intensity, we conclude that the perturbations of intensity
are asymptotically dominated by the effects of absorption. Formula
(21) is also interesting because it shows that the sign of the kernel
varies spatially depending on the relative orientations of the two
current vectors. The key features of the sensitivity kernels will be
further explored and described in the next section, in the case of
2-D isotropic scattering.

3 A P P L I C AT I O N T O 2 - D I S O T RO P I C
S C AT T E R I N G

As illustrated in the previous section, the calculation of the sensi-
tivity kernels requires the knowledge of the Green’s function of the
radiative transfer equation, including the full angular dependence of
the specific intensity. As is well known, the intensity that propagates
in a scattering medium is composed of a coherent (or un-scattered)
part, and a diffuse (or incoherent) part (see, e.g. Akkermans &
Montambaux 2007). The word ‘diffuse’ refers here to the intensity
which has been scattered at least once and does not imply any diffu-
sion approximation. Because in seismic applications, the source and
receiver are point-like and embedded in the medium, both the dif-
fuse and coherent parts of the intensity are singular and contribute
to the sensitivity kernels. In this work, we consider a simplified
physical situation (isotropic scattering), but we proceed as far as
we can in the analytical treatment of the singularities. We do so by
explicitly separating the intensity into its coherent and incoherent
parts. As a consequence of the spatial perturbations in the medium,
these two terms are coupled and contribute to the sensitivity in the
coda at long lapse-time. This approach is in sharp contrast with
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Coda waves sensitivity kernels 7

the numerical treatment usually adopted in radiative-transfer-based
optical tomography (Arridge & Schotland 2009).

Let us consider an isotropically scattering medium in two di-
mensions. In this simple model, a closed-form expression for the
Green’s function of the radiative transfer equation has been derived
by Paasschens (1997), including the angular dependence of the spe-
cific intensity required for our purposes. From a more practical
point of view, 2-D kernels may provide a first idea of the sensitivity
of scattered surface waves to lateral variations of scattering and ab-
sorption properties. As shown by Paasschens (1997), the transport
of specific intensity from source to station involves two terms:

I (SR, n̂, t) = 1

2π
e−ct/ l0δ(SR − ct n̂)θ (t)

+ θ (ct − S R)

2πl0(ct − SR.n̂)
e
√

c2t2/l0
2−S R2/l0

2−ct/ l0 , (23)

where SR denotes the source–station position vector, t is the lapse-
time in the coda, l0 = cτ 0 is the mean free path of the reference
medium and n̂ is the propagation direction at the detection point.
The symbols δ and θ represent the Dirac and Heaviside distributions,
respectively. On the right-hand side of eq. (23), the first term de-
scribes the coherent field which is perfectly localized in time, space
and propagation direction. This term decays exponentially fast and
becomes negligible a few mean free paths away from the source.
At these distances, most of the energy is transported diffusively, as
described by the second term on the R.H.S. of eq. (23). Integrating
over all space directions n̂ yields the total intensity received at R
(Shang & Gao 1988; Paasschens 1997):

I (SR, t) = e−ct/ l0

2π S R
δ(ct − S R)

+ θ (ct − S R)

2πl0

√
c2t2 − S R2

e
√

c2t2/l0
2−S R2/l0

2−ct/ l0 . (24)

To derive eq. (24), we have used the following decomposition of
the delta function: δ(SR − ct n̂) = δ(ct − S R)δ( ˆSR − n̂)/S R with
SR > 0, and the property

∫
2π

δ(n̂ − n̂0) dn̂ = 1, where
∫

2π denotes
an integral over all directions in the plane (see Paasschens 1997, for
details). Note that by multiplying eqs (23) and (24) by the factor
e−t/ta

0 , one obtains the Green’s functions of the radiative transfer
equation in a scattering medium with constant absorption time t a

0 .

Armed with this analytical solution, we begin by examining the role
of spatial variations of absorption.

3.1 Absorption sensitivity kernel

To facilitate the presentation of the results, we introduce non-
dimensional variables t̄ = t/τ0, R̄′ = R′/ l0, R̄0 = R0/ l0, where R0

(R′) denotes the source–perturbation (receiver–perturbation) posi-
tion vector (see Fig. 1). As a consequence of the change of vari-
ables, the perturbation of absorption and scattering δ(1/t a(r)) and
δ(1/τ (r)) are henceforth normalized by the inverse mean free time
of the reference medium 1/τ 0. To minimize the length of formulae,
we omit the exponential decay due to absorption in the reference
medium, that is, we take t a

0 → ∞. Note that this assumption only
affects the overall amplitude of the kernels but not their spatial
dependence. Inserting eq. (23) into eq. (11), one obtains:

K a(R̄′; R̄0; t̄) = − 1

2πl0
2

∫
2π

∫ t̄

0

(
e−(t̄−t̄ ′)δ(R̄′ + (t̄ − t̄ ′)n̂′)θ (t̄ − t̄ ′)

+ e
√

(t̄−t̄ ′)2−R̄′2−(t̄−t̄ ′)θ (t̄ − t̄ ′ − R̄′)

2π ((t̄ − t̄ ′) + R̄′.n̂′)

)

×
(

e−t̄ ′δ(R̄0 − t̄ ′n̂′)θ (t̄ ′)

+ e
√

t̄ ′2−R̄2
0−t̄ ′θ (t̄ ′ − R̄0)

2π (t̄ ′ − R̄0.n̂′)

)
dt̄ ′ dn̂′. (25)

In eq. (25), the integrand is composed of four terms which describe
different paths from source to receiver going through the perturba-
tion. Each term exhibits specific singularities which will be analysed
separately.

3.1.1 Coherent–coherent term

We first consider the coherent propagation from source to perturba-
tion and from perturbation to receiver. This term involves products
of delta functions which facilitate the integration over n̂′ and t̄ ′. The

Figure 1. Geometry and notations used in the text. The source, receiver and perturbation position vectors are denoted by r0, r and r′, respectively. To evaluate
the kernels numerically, we introduce (non-dimensional) Cartesian coordinates (x̄, ȳ) expressed in l0 units, with l0 = cτ 0 the reference mean free path. In this
coordinate system, the source is located at (−S R/2, 0) and the receiver at (S R/2, 0). Unit vectors are denoted with a hat.
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8 J. Mayor, L. Margerin and M. Calvet

end result may be put into two equivalent forms:

K a
cc(R̄

′; R̄0; t̄) = − θ (S R − R̄0)δ(SR − t̄R̂0)e−t̄

2πl0
2 R̄0

= − θ (S R − R̄′)δ(RS − t̄R̂′)e−t̄

2πl0
2 R̄′ , (26)

which emphasize the symmetry upon permutation of source and sta-
tion, as required by reciprocity. To understand the physical meaning
of the term (26), we calculate its effect on the detected intensity by
considering a general perturbation of absorption δ(1/t a(r))/(1/τ0):

δ I a
cc = − τ0δ(S R − t̄)e−S R

2πl0
2 S R

∫ S R

0
δ

(
1

t a(x̄l0 ˆSR)

)
dx̄ . (27)

The perturbation (27) contributes exactly at the ballistic time and
corrects the coherent intensity for the effect of absorption inhomo-
geneities along the direct ray connecting the source and the receiver.
In the case of a constant perturbation of absorption, one obtains:

δ I a
cc = − δ(S R − ct)e−S R/ l0

2π
δ

(
1

la

)
, (28)

where dimensional variables have been restored and la = ct a de-
notes the absorption length. The result (28) may be verified by
direct evaluation of the partial derivative of the coherent term of the
reference solution (24) with respect to a perturbation of absorption.
The coherent–coherent term does not affect the coda intensity and
will not be discussed further.

3.1.2 Coherent–diffuse term

We now examine the contribution of the energy transported coher-
ently (respectively, diffusely) from the source to the perturbation
and diffusely (respectively, coherently) from the perturbation to the
receiver. This coupling between coherent and diffuse waves is ex-
pressed as a sum of two terms:

K a
cd(R̄′; R̄0; t̄) = − 1

(2πl0)2

(
e−t̄+

√
(t̄−R̄′)2−R̄2

0

R̄′(t̄ − R̄′) + R̄0 · R̄′

+ e−t̄+
√

(t̄−R̄0)2−R̄′2

R̄0(t̄ − R̄0) + R̄′ · R̄0

)
θ (t̄ − R̄′ − R̄0), (29)

whose symmetry reflects again the reciprocity at the level of the
radiative transfer equation. A map view of the coherent–diffuse
kernel is plotted in Fig. 2 (left column) for a source–station distance
of one mean free path and three different lapse-times in the coda:
t = 2ts, 3ts, 4ts, with ts = τ0 the propagation time of ballistic waves.
The source and station are located on the horizontal axis at x̄ =
±0.5 and are depicted by black dots. The mapped data have been
calculated as follows: the region of the plane [−w, w] × [0, w]
is discretized on a 2-D grid of dimension (2N + 1) × (N + 1)
delimiting 2N × N pixels (N typically equals 100); the value of the
kernel is evaluated at the centre of each pixel and stored in a matrix.
Using the symmetry of the kernel with respect to reflection across
the horizontal axis, the complete map is obtained. Note that this
procedure avoids the evaluation of the kernel at its singular points.
The discretized version of the kernel is subsequently normalized
by assigning the absolute value 1 to the central pixel of the total
kernel. In this way, the weight of the different contributions to the
total sensitivity can be more easily analysed.

If we think of a crustal mean free path of the order of 100 km, the
spatial and temporal scale used in Fig. 2 is typical of coda detection

at local to regional distances. The coherent–diffuse term is always
negative because absorption removes energy from the system. It
vanishes outside the causality or single-scattering ellipse defined by
the condition R′ + R0 = ct, and possesses an algebraic (integrable)
singularity at the source and the receiver. To better appreciate the
spatial dependence of the coherent–diffuse term, we show cross-
sections of the kernel along and across the source–receiver axis
in Fig. 3. Each plot has been obtained by evaluating the kernels at
1000 evenly distributed points and the values are clipped at the limits
displayed on the vertical axes. The longitudinal cross-section reveals
the singular behaviour of the coherent–diffuse term at the source and
at the station, which results in a strong sensitivity around these two
points. There exists some sensitivity perpendicular to the source–
receiver axis. But because the coherent wave decays exponentially
fast, the coherent–diffuse kernel cannot extend far from the source
and receiver. This point is clearly illustrated in Fig. 4, where the
absorption kernels are represented for SR = 5l0 and lapse-times
t = 1.2ts, 2ts, 3ts, ts = 5τ0. If we think of a mean free path of the
order of a few kilometres, this spatiotemporal scale is typical of coda
detection in volcanic regions. In this configuration, after a transient
regime of expansion, the coherent–diffuse contribution stabilizes
and displays two spots of enhanced sensitivity of radius one mean
free path around the source and receiver.

3.1.3 Diffuse–diffuse term

We now examine the contribution of waves which propagate dif-
fusely from source to perturbation and from perturbation to receiver.
This diffuse–diffuse absorption kernel is given by the following
integral:

K a
dd(R̄′; R̄0; t̄) = − 1

2πl0
2

×
∫
2π

∫ t̄

0

e−t̄+
√

(t̄−̄t ′)2−(R̄′)2+
√

(t̄ ′)2−(R̄0)2
θ (t̄ ′−R̄0)θ (t̄− t̄ ′−R̄′)

(2π )2(t̄− t̄ ′ + R̄′ · n̂′)(t̄ ′ + R̄0 · n̂′)
dt̄ ′ dn̂′,

(30)

which diverges logarithmically at the source and at the receiver.
To disentangle the singularities and obtain a more symmetric ex-
pression, we perform a partial fraction expansion and subsequently
introduce new variables ū = t̄ ′/R̄0 and v̄ = (t̄ − t̄ ′)/R̄′. Taking into
account the bounds on t̄ and t̄ ′ imposed by the product of Heaviside
functions, we obtain:

K a
dd(R̄′; R̄0; t̄) = − 1

(2πl0)2

∫
2π

t̄−R̄′
R̄0∫

1

e−t̄+
√

(t̄−ū R̄0)2−R̄′2+R̄0

√
ū2−1

2π (t̄ − SR · n̂′)(ū − R̂0 · n̂′)

× θ (t̄ − R̄0 − R̄′) dū dn̂′

− 1

(2πl0)2

∫
2π

t̄−R̄0
R̄′∫

1

e−t̄+
√

(t̄−v̄ R̄′)2−R̄2
0+R̄′

√
v̄2−1

2π (t̄ − SR · n̂′)(v̄ + R̂′ · n̂′)

× θ (t̄ − R̄0 − R̄′) dv̄ dn̂′. (31)

The first term can be deduced from the second by reflection across
the bisector of the source–station line segment SR. In eq. (31), the
angular integral may be performed analytically using contour in-
tegration as detailed in Appendix B. The remaining integrals over
the variables ū and v̄ can be performed numerically. Maps of the
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Coda waves sensitivity kernels 9

Figure 2. Colour maps of the absorption sensitivity kernels for source–station distance SR = l0, and propagation times t = 2ts (top), t = 3ts (middle) and
t = 4ts (bottom), with ts = τ0 the propagation time of ballistic waves. Left: coherent–diffuse term; Centre: diffuse–diffuse term; Right: total sensitivity kernel.
On the horizontal and vertical axes, the distances are expressed in mean free path units. The black ellipse delimits the causality domain outside which the
kernels equal zero. The black dots indicate the position of the source and station. The kernels have been normalized so that the absolute value of the total
sensitivity equals 1 at the midpoint of SR. To enhance the visibility, the colour scale has been saturated.

diffuse–diffuse absorption kernel are shown in Figs 2 and 4 for
source–station distances of one and five mean free paths, respec-
tively. These map views are complemented with longitudinal and
transverse cross-sections in Figs 3 and 5. The diffuse–diffuse ker-
nels display a zone of maximum sensitivity along the ray connecting
the source and receiver with a slow (logarithmic) divergence at these
two points. Figs 4 and 5 show the growth of the domain of influence
of the diffuse–diffuse kernel with time, which is to be related to the
expansion of the diffuse halo at a rate

√
Dt (t → ∞, D the diffu-

sion constant). The diffuse waves are therefore responsible for the
sensitivity of coda waves at large distance (compared to the mean
free path) from the source and station.

3.1.4 Total absorption kernel

The total absorption kernel is the sum of the three contributions dis-
cussed so far: K a = K a

cc + K a
cd + K a

dd. Let us first remark that all
scattered wave paths have to propagate through a neighbourhood of
the source and station, which provides a simple explanation for the
divergence of the sensitivity at these two points. It is instructive to
compare the role played by the different terms for different source–

station distances and different lapse-times in the coda. For SR = l0,
and t in the range [2ts, 4ts] (ts = τ0), the sensitivity of coda waves is
dominated by the coherent–diffuse term. The diffuse–diffuse term
adds some extra sensitivity in the bulk of the medium for propa-
gation distances larger than the mean free path. Nevertheless, the
zone of the highest sensitivity is localized around the direct ray
connecting the source and receiver, which strongly suggests that
local information on the absorption structure may be retrieved from
the coda. For larger source–station distance (SR = 5l0) and lapse-
time in the range ([1.2ts, 3ts], ts = 5τ0), a similar pattern emerges
but the role played by the various terms is different. Interestingly,
even at large lapse-time in the coda, the maximum sensitivity is
still concentrated in a region of typical width one mean free path
encompassing the source and the station. Except in the immediate
vicinity of these two points, the sensitivity along and across the
direct ray path is largely dominated by the diffuse–diffuse term.

3.2 Scattering sensitivity kernel

We pursue our investigations by analysing the sensitivity kernels for
perturbations in the scattering strength δ(1/τ (r))/(1/τ0). We follow
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10 J. Mayor, L. Margerin and M. Calvet

Figure 3. Cross-section of the absorption sensitivity kernels shown in Fig. 2. Left: along the source–receiver axis. Right: along the perpendicular bisector of
SR. Black line: coherent–diffuse term. Grey line: diffuse–diffuse term. The kernels have been normalized so that the absolute value of the total equals 1 at the
midpoint of SR.

the same approach as in the absorption section and study system-
atically the coupling between the coherent and diffuse terms of the
Green’s function of the radiative transfer equation. As previously
shown in eq. (13), the scattering kernel is the sum of the absorption
and isotropic kernels, the latter being expressed as

K iso(R̄′; R̄0; t̄) = 1

(2πl0)2

∫ t̄

0

(
e−(t̄−t̄ ′)

R̄′ δ(t̄ − t̄ ′ − R̄′)

+ e
√

(t̄−t̄ ′)2−R̄′2 − (t − t̄ ′)θ (t̄ − t̄ ′ − R̄′)√
(t̄ − t̄ ′)2 − R̄′2

)

×
(

e−t̄ ′

R̄0
δ(t̄ ′ − R̄0) + e

√
t̄ ′2−R̄2

0−t̄ ′θ (t̄ ′ − R̄0)√
t̄ ′2 − R̄2

0

)
dt̄ ′.

(32)

The term ‘isotropic’ refers to the fact that only the angularly aver-
aged part of the specific intensity appears in eq. (32). In the discus-
sion that follows, we will emphasize the new singularities brought
up by the isotropic part of the scattering kernel. Note that in the
context of monitoring temporal variations from waveform changes
in the coda, the kernel K iso has recently been introduced by Planès
et al. (2014).

3.2.1 Coherent–coherent term

The coherent–coherent kernel is the sum of the term (26) which
takes into account the variation of the coherent intensity caused
by scattering perturbations along the direct ray path and of the
following contribution:

K iso
cc (R̄′; R̄0; t̄) = 1

(2πl0)2

e−t̄

R̄′ R̄0
δ(t̄ − R̄0 − R̄′), (33)

which can be identified as a single-scattering correction. Indeed,
this contribution has its sensitivity concentrated on the causality
ellipse and corresponds to the coupling between two coherent prop-
agators through a scattering event. This coherent–coherent kernel
decays exponentially fast in the coda and becomes completely neg-
ligible after a few mean free times. Because it has the form of a
Dirac distribution, the sensitivity can only be represented graph-
ically after some smoothing has been applied. To give a realis-
tic idea of its contribution to the total sensitivity in map view,
we plot a discretized version of the delta function after averag-
ing over an area of size one pixel. Such a representation is ad-
equate as long as the scattering perturbations are smooth at this
scale.
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Coda waves sensitivity kernels 11

Figure 4. Colour maps of the absorption sensitivity kernels for source–station distance SR = 5l0 and propagation times t = 1.2ts (top), t = 2ts (middle)
and t = 3ts (bottom), with ts = 5τ0 the propagation time of ballistic waves. Left: coherent–diffuse term. Centre: diffuse–diffuse term. Right: total sensitivity
kernel. On the horizontal and vertical axes, the distances are expressed in mean free path units. The black ellipse delimits the causality domain outside which
the kernels equal zero. The black dots indicate the position of the source and station. The kernels have been normalized so that the absolute value of the total
equals 1 at the midpoint of SR. To enhance the visibility, the colour scale has been saturated.

3.2.2 Coherent–diffuse term

The coherent–diffuse kernel is the sum of the absorption term (29)
and of the following term:

K iso
cd (R̄′; R̄0; t̄) = 1

(2πl0)2

(
e−t̄+

√
(t̄−R̄′)2−R̄2

0

R̄′
√

(t̄ − R̄′)2 − R̄2
0

+ e−t̄+
√

(t̄−R̄0)2−R̄′2

R̄0

√
(t̄ − R̄0)2 − R̄′2

)
θ (t̄ − R̄′ − R̄0). (34)

Like its absorption mate, the isotropic kernel (34) has an algebraic
(integrable) singularity at the source and receiver. It exhibits an
additional square-root-type singularity as one approaches the single-
scattering ellipse from the inside, that is, in the limit R̄′ + R̄0 → t̄−.
This singularity corresponds to the coherent propagation of intensity
from the source to a scattering perturbation located in the vicinity
of the causality ellipse followed by diffuse propagation from the
perturbation to the receiver after an additional scattering event.
The coherent–diffuse scattering kernel (i.e. the sum of the isotropic
and absorption parts) is shown in map view in Fig. 6 for a source–

station distance SR = l0 and lapse-time t = 2ts, 3ts, 4ts, ts = τ0. The
method adopted to obtain these maps is the same as in the absorption
case. Fig. 6 illustrates that the coherent–diffuse scattering kernel is
significantly more complex than its absorption counterpart. The
divergence in the vicinity of the ellipse is clearly visible at short
lapse-time and becomes fainter at longer lapse-time. This behaviour
can be traced back to the exponential decay of the coherent term
with the propagation distance. Cross-sections of the kernels along
and across the direct ray path are also shown in Fig. 7. The square-
root-type singularity is still apparent in the vicinity of the single-
scattering ellipse in this figure.

The coherent–diffuse scattering kernel exhibits a zone of negative
sensitivity of typical width one mean free path along the direct ray
connecting the source and station. Inside this area, an increase of
the scattering strength results in a decrease of the intensity received
in the coda. Everything happens as if the extra-scattering plays the
role of a screen which deflects part of the energy which would have
otherwise propagated from source to station. Conversely, an extra
scattering event adds some probability for waves propagating in a
direction opposite to the direct ray path to be backscattered to the
receiver. This gives rise to the lobes of high positive sensitivity
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12 J. Mayor, L. Margerin and M. Calvet

Figure 5. Cross-sections of the absorption sensitivity kernels shown in Fig. 4. Left: along the source–receiver axis. Right: along the perpendicular bisector of
SR. Black line: coherent–diffuse term. Grey line: diffuse–diffuse term. The kernels have been normalized so that the absolute value of the total equals 1 at the
midpoint of SR.

visible in Fig. 6. For larger source propagation distance SR = 5l0,
The coherent–diffuse kernel displays a strongly dipolar pattern with
most of the sensitivity concentrated around the source and station as
shown in Fig. 8. The singularity of the coherent–diffuse scattering
kernel in the vicinity of the causality ellipse is strongly attenuated
and becomes barely visible on the cross-sections (see Fig. 9).

3.2.3 Diffuse–diffuse term

We finally examine the role played by diffuse propagation from
source to perturbation and from perturbation to receiver with an
extra-scattering event taking place at the perturbation. This process
is described by the following sum of two terms:

K iso
dd (R̄′; R̄′

0; t̄) = 1

(2πl0)2

×

t̄−R̄′
R̄0∫

1

e−t̄+R̄0

√
ū2−1+

√
(t̄−ū R̄0)2−R̄′2

√
ū2 − 1(R̄0

√
ū2−1 +

√
(t̄−ū R̄0)2 − R̄′2)

× θ (t̄ − R̄′ − R̄0) dū + 1

(2πl0)2

×

t̄−R̄0
R̄′∫

1

e−t̄+R̄′
√

v̄2−1+
√

(t̄−v̄ R̄′)2−R̄2
0

√
v̄2 − 1(R̄′√v̄2 − 1 +

√
(t̄ − v̄ R̄′)2 − R̄2

0)

× θ (t̄ − R̄′ − R̄0) dv̄, (35)

which have been obtained by following the same steps as outlined
in the absorption section. Thus, the logarithmic divergences at the
source and receiver have been separated out. Like in the absorption
case, one term of the eq. (35) can be obtained from the other by re-
flection across the bisector of the source–receiver line segment. The
diffuse–diffuse scattering kernel, that is, the sum of (31) and (35) is
represented in Figs 6 and 8 for source–receiver distances SR = l0,
5l0, respectively. The corresponding longitudinal and transverse
cross-sections are shown in Figs 7 and 9. The diffuse–diffuse term
exhibits a zone of negative sensitivity of typical width one mean
free path around the direct ray path. In the long lapse-time limit, the
sign of the kernel can be explained using the asymptotic relation
(21). In this formula, everything happens as if both the source and
receiver radiate energy into the medium. Then, the sign of the kernel
depends on the scalar product between the energy current vectors
of the two sources: the one placed at S, and the other at R. Clearly,
this scalar product will be negative on the line segment SR because
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Coda waves sensitivity kernels 13

Figure 6. Colour maps of the scattering sensitivity kernels for source–station distance SR = l0 and propagation times t = 2ts (top), t = 3ts (middle) and
t = 4ts (bottom), with ts = τ0 the propagation time of ballistic waves. Left: coherent–diffuse term. Centre: diffuse–diffuse term. Right: total (including the
coherent–coherent part). On the horizontal and vertical axes, the distances are expressed in mean free path units. The black ellipse delimits the causality domain
outside which the kernels equal zero. The black dots indicate the position of the source and station. The kernels have been normalized so that the absolute
value of the total equals 1 at the midpoint of SR. To enhance the visibility, the colour scale has been saturated.

the energy fluxes of the two sources are in opposite directions at
all times. Conversely, elsewhere on the line (SR), the energy flows
away from the two sources in the same direction, hence the positive
sign. The cross-sections of Figs 7 and 9 show the slow divergence of
the diffuse–diffuse kernel at the source and station. Fig. 8 illustrates
the expansion of this kernel with the lapse-time in the coda, which,
like in the absorption case, may be related to the

√
Dt growth of the

diffuse halo. Hence, the diffuse–diffuse kernel provides sensitivity
to variations of the scattering strength in the bulk of the medium.

3.2.4 Total scattering kernel

We may now examine the relative contributions of the differ-
ent terms composing the total scattering kernel: K sc = K iso

cc +
K iso

cd + K iso
dd + K abs. For SR = l0 and relatively short lapse-time

t ∈ [2ts, 4ts], Fig. 7 shows that the sensitivity along the direct ray
is largely dominated by the coherent–diffuse term. Across the di-
rect ray, the coherent–diffuse term is still dominant but the order
of magnitude of the diffuse–diffuse term becomes comparable after
four mean free times. As shown in Fig. 6, the spatial patterns of
the coherent–diffuse and total scattering kernel are very similar.

The most clearly visible contribution of the diffuse–diffuse term is
the broadening of the positive lobes of sensitivity, as well as some
additional sensitivity in the bulk of the medium (see Fig. 6). For
larger source–station distance SR = 5l0, the coherent–diffuse term
plays a dominant role only in the vicinity of the source and receiver,
as shown on the cross-sections of Fig. 9. The sensitivity across the
direct ray path is largely controlled by the diffuse waves, except at
early time in the coda (t = 1.2ts). Like in the case of absorption, we
remark that at long lapse-time in the coda, the sensitivity is highest
in a domain of width one mean free path going from source to sta-
tion but there is some additional complexity due to the changes of
sign of the kernel.

3.3 Integrated sensitivity kernels

So far, we have focused the discussion on the spatial dependence
of the kernels without paying attention to their overall amplitude.
In this section, we examine the relative contributions of the dif-
ferent terms composing the scattering and absorption kernels by
calculating their integrals over all possible positions of the pertur-
bation. These integrated kernels give an idea of the sensitivity of
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14 J. Mayor, L. Margerin and M. Calvet

Figure 7. Cross-section of the scattering sensitivity kernels shown in Fig. 6. Left: along the source–receiver axis. Right: along the perpendicular bisector of
SR. Black line: coherent–diffuse term. Grey line: diffuse–diffuse term. The arrows indicate the Dirac-type distribution on the single-scattering ellipse.

coda waves to spatial variations of scattering and absorption that
are smooth at the scale of the area probed by the diffuse waves.
Note that this area should typically grow linearly in time when the
coherent waves dominate and like the square root of time at long
lapse-time in the coda. The different terms of the integrated kernels
are plotted in Fig. 10 for a source–receiver distance SR = l0 (on
the left) and for SR = 5l0 (on the right). These results have been
obtained by direct numerical integration of the sensitivity kernels,
except for the coherent–coherent scattering term which can be ob-
tained analytically. The sum rules (15) and (17) have been verified
with a typical accuracy of five digits, which validates the numer-
ical approximations. Independent of the source–receiver distance,
we find that the absolute magnitude of the integrated kernels is al-
ways larger for absorption than for scattering. The single-scattering
correction term becomes smaller in absolute value than all other
terms after typically two mean free times, as anticipated. The time
after which the diffuse–diffuse term exceeds the coherent–diffuse
term depends slightly on the source–receiver distance SR and on the
type of perturbation. In the case of scattering (respectively, absorp-
tion), the integrated sensitivity is dominated by the diffuse–diffuse
contribution after 4τ 0 (respectively, 3τ 0) for SR = l0 and 5.5τ 0 (re-
spectively, 5.5τ 0) for SR = 5l0. Finally, the change of sign of the
integrated scattering kernels, depending on the source–receiver dis-
tance, is worth noting. Except for the coherent–coherent term which
is always positive, the integrated scattering kernels become very

rapidly positive for SR = l0, but are always negative for SR = 5l0

(see Fig. 10). Our results suggest that as far as large-scale per-
turbations are concerned, the effects of absorption dominate over
scattering in the coda.

4 I M PA C T O F A L O C A L P E RT U R B AT I O N
O N T H E E N E RG Y E N V E L O P E O F C O DA
WAV E S

In this section, we calculate the relative perturbations of the inten-
sity in the coda induced by a localized perturbation of the scattering
and/or absorption properties using the sensitivity kernels developed
in Sections 2 and 3. The anomaly has the shape of a Gaussian of
typical width σ , normalized such that its maximum equals 1/4. Note
that by linearity, the calculations presented below can be rescaled
to obtain the results for a perturbation of arbitrary magnitude ε.
The main purpose of this section is to identify the signature of an
anomaly of scattering and/or absorption properties based on the
modification of the coda envelope with respect to a reference inten-
sity master curve. This is essentially the idea underlying the work
of Nishigami (1991, 2000). We extend his approach by considering
the effects of multiple scattering and the role of absorption. In the
calculations that follow, we consider two non-dimensional epicen-
tral distances S R = 0.5 and S R = 2, respectively. To keep an eye
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Coda waves sensitivity kernels 15

Figure 8. Colour maps of the scattering sensitivity kernels for source–station distance SR = 5l0 and propagation times t = 1.2ts (top), t = 2ts (middle) and
t = 3ts (bottom), with ts = 5τ0 the propagation time of ballistic waves. Left: coherent–diffuse term. Centre: diffuse–diffuse term. Right: total (including the
coherent–coherent part). On the horizontal and vertical axes, the distances are expressed in mean free path units. The black ellipse delimits the causality domain
outside which the kernels equal zero. The black dots indicate the position of the source and station. The kernels have been normalized so that the absolute
value of the total equals 1 at the midpoint of SR. To enhance the visibility, the colour scale has been saturated.

on future applications, the reader can think of a mean free path of
the order of 100 km, which is a reasonable value for the crust around
5 Hz. The two epicentral distances ¯S R = 0.5 and ¯S R = 2 therefore
correspond to local and regional detection of coda waves generated
by crustal earthquakes.

4.1 Effect of the size of the anomaly

We first consider a scattering/absorption anomaly located at the
midpoint of the direct ray connecting the source and station and
examine four non-dimensional widths σ = {0.1, 0.2, 0.3, 0.4}. The
relative intensity perturbation is plotted as a function of the time
in the coda for S R = 0.5 (left) and S R = 2 (right) in Fig. 11. For
both scattering and absorption, we observe that the overall inten-
sity perturbation decreases with the epicentral distance and with the
size of the anomaly. Suppose we are able to measure variations of
average coda intensity of the order of 5 per cent, then our calcu-
lations indicate that a scattering (respectively, absorption) anomaly
smaller than 0.2 (respectively, 0.1) mean free path will be almost
undetectable in the coda. In other words, small-scale fluctuations of
the mean free path and/or absorption length have very little impact

on the shape of the coda, which may partly explain its stability.
Other remarkable features show up in Fig. 11. (1) The sign of the
intensity perturbation caused by a scattering anomaly depends on
the epicentral distance: It may switch from positive to negative as
the source–station distance increases. (2) In most cases, absorption
anomalies have a much longer-lasting effect on the intensity re-
ceived in the coda than scattering anomalies. This, in turn, suggests
that spatial variations of scattering/absorption should be looked for
in the early/late coda, respectively.

4.2 Effect of the position of the anomaly

The observations made so for have been based on a rather spe-
cific configuration. In this section, we fix the size of the anomaly
σ = 0.2 and vary its location with respect to the source and receiver.
The maximum amplitude is taken equal to 1/4. In Fig. 12, we repre-
sent the perturbation of intensity as a function of lapse-time in the
coda for two epicentral distances (S R = 0.5, left; S R = 2, right)
and four positions of the anomaly on the bisector of SR (x̄ = 0,
ȳ = {0, 0.25, 0.5, 1}). Fig. 13 examines the case where the centre
of the anomaly is located on the line (SR), backwards from the
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16 J. Mayor, L. Margerin and M. Calvet

Figure 9. Cross-section of the scattering sensitivity kernels shown in Fig. 8. Left: along the source–receiver axis. Right: along the perpendicular bisector of
SR. Black line: coherent–diffuse term. Grey line: diffuse–diffuse term. The arrows indicate the Dirac-type distribution on the single-scattering ellipse.

Figure 10. Integrated sensitivity kernels for absorption (red) and scattering (black) as a function of time. The inset shows the different line styles used
to represent the different terms of the kernels. Left: source–receiver distance S R = 1. Right: source–receiver distance S R = 5. The sensitivities have been
normalized by the common pre-factor 1/(2π l0)2, with l0 the mean free path in the unperturbed medium.

source (x̄ = −S R/2 − {0, 0.25, 0.5, 1.0}). Note that the same fig-
ure would be obtained if the anomalies were flipped around the
ȳ-axis. For both scattering and absorption anomalies, it is apparent
from Figs 12 and 13 that the intensity perturbation decreases with
the distance to the source either along or across the direct ray path,
as well as with the epicentral distance. Below, we provide more
specific descriptions for each kind of perturbation.

4.2.1 Scattering anomalies

We analyse the scattering anomalies first, because they give rise to
maxima and/or minima which are easily identifiable on the relative
intensity perturbation curves in both Figs 12 and 13. At short epi-
central distance (S R = 0.5), the time of the maximum tm increases
with the distance between the source and the anomaly but does not
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Coda waves sensitivity kernels 17

Figure 11. Relative intensity perturbation caused by a localized scattering (black) or absorption (red) anomaly. The anomaly has the shape of a Gaussian of
width σ = 0.1 (dashed line), σ = 0.2 (dash-dotted line), σ = 0.3 (dotted line), σ = 0.4 (solid line) and maximum amplitude 1/4. Left: epicentral distance SR
= 0.5l0. Right: epicentral distance SR = 2l0.

Figure 12. Relative intensity perturbation caused by a localized scattering (black) or absorption (red) anomaly whose centre is located at ȳ = 0 (solid line),
ȳ = 0.25 (dotted line), ȳ = 0.5 (dash-dotted line) and ȳ = 1 (dashed line), on the bisector of SR. The anomaly has the shape of a Gaussian of width σ = 0.2
(dashed line) and maximum amplitude 1/4.

Figure 13. Relative intensity perturbation caused by a localized scattering (black) or absorption (red) anomaly whose centre is located at x̄ = −S R/2 (solid
line), x̄ = −S R/2 − 0.25 (dotted line), x̄ = −S R/2 − 0.5 (dashed line) and x̄ = −S R/2 − 1 (dash-dotted line), on the line (SR). The anomaly has the shape
of a Gaussian of width σ = 0.2 (dashed line) and maximum amplitude 1/4.

correspond to the time of flight of the ballistic wave tb. In general,
tm is smaller than tb, which implies that traditional migration based
on the single-scattering approximation may underestimate the actual
distance to the anomaly. In addition, we remark that for short epicen-
tral distances, scattering anomalies located along, or perpendicular
to the source–receiver line of sight, share very similar signatures. In

practice, this means that a combination of epicentral distances and
source–station orientations is necessary to remove the ambiguity
and correctly map the scattering properties of the target region. In
the case of an anomaly located on the bisector of SR, additional
complexity appears as the epicentral distance increases. A positive
scattering anomaly may give rise to a negative intensity pulse, or
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18 J. Mayor, L. Margerin and M. Calvet

even entail a positive maximum followed by a negative minimum
(see Fig. 12 right, ȳ = 0.5). The sign change is to be related to
the temporal evolution of the sensitivity described in the previous
section: at short time, the anomaly intersects the single-scattering
ellipse in the vicinity of which the sensitivity is strongly positive,
while at late time, the anomaly lies in the broad zone of negative
sensitivity between the source and station. Because practical esti-
mation of the coda intensity usually involves smoothing in the time
domain, it is likely that the more complex signature of a scattering
anomaly might be washed out in such cases.

4.2.2 Absorption anomalies

For short epicentral distances (S R = 0.5), Figs 12 and 13 illus-
trate that the relative intensity perturbations caused by absorption
anomalies depend generally smoothly on the lapse-time in the coda.
In general, absorption anomalies do not yield clearly identifiable
maxima but instead manifest themselves as a steady decrease of
δI/I with time. Hence, they mostly affect the decay rate of the in-
tensity and therefore have a major impact on the apparent coda
quality factor Qc. In Fig. 13, it is also apparent that the epicentral
distance does not play an important role when the anomaly is lo-
cated on the line (SR), backwards from the source. Interestingly,
while the magnitude of the intensity perturbation depends strongly
on the position of the anomaly, the rate of decay of the intensity
appears to be independent from this quantity at sufficiently long
lapse-time [see Figs 12 (left) and 13 (left)].

For larger epicentral distance (S R = 2) and an anomaly located
on the bisector of SR, the impact on the intensity received in the
coda is more contrasted. When the anomaly is located in the vicinity
of the direct ray, after a transient regime of the order of one mean free
time, the anomaly manifests itself as an almost time-independent
drop of the relative intensity δI/I. Hence, such anomalies will have
no impact on the coda decay and could instead be interpreted as
a kind of ‘site effect’. However, its amplitude is so small that it
will most likely be undetectable. The comparison of Figs 12 and 13
also reveals that absorption anomalies located at sufficiently large
distance (typically half the mean free path) either perpendicular to
the direct ray path or backwards from the source yield similar signa-
ture. Hence, the combination of different source–receiver pairs with
various epicentral distances and backazimuths will be necessary to
map an absorption anomaly in the region under study.

To conclude this section, we remark that the most prominent
intensity variations caused by scattering/absorption anomalies occur
at short lapse-time in the coda. It is well-known, since the paper of
Aki & Chouet (1975), that the decay of the coda becomes stable
at sufficiently long lapse-time only. Our calculations suggest that
the irregular decay of the intensity in the early coda may be partly
ascribed to spatial variation of scattering and absorption in the
region under study.

5 C O N C LU S I O N A N D O U T L O O K

In this paper, we have used a perturbation approach to establish gen-
eral formulae relating spatial variations of scattering and absorption
properties to the intensity received in the coda. These formulae take
the form of spatial integrals of the perturbation weighted by a sen-
sitivity kernel, which depends on the lapse-time in the coda and
on the type of perturbation. The perturbations couple the coherent
and incoherent parts of the intensity so that the two contribute to
the sensitivity of coda waves even at long lapse-time. The kernels

have been calculated in 2-D isotropically scattering media and their
singularities have been described in detail. In the case of absorption,
the sensitivity is maximum along the direct ray path connecting the
source and station and diverges at these two points. We have also
shown that a localized perturbation of absorption affects the overall
decay of the coda in a manner which depends on the location of
the anomaly with respect to the source and station. In the case of
scattering, the sensitivity has a much more complex structure. In
addition to the divergence at the source and station, the kernel is
also singular on the single-scattering ellipse. The singularity is, in
fact, double, algebraic and Dirac delta-like. These two terms decay
exponentially fast with the lapse-time and become negligible after
two to three mean free times. The scattering kernel displays a broad
zone of strong negative sensitivity around the direct ray path and is
positive elsewhere. Because of this intricate spatial pattern, a local-
ized scattering anomaly has a complex signature in the coda, and
may entail a positive or negative variation of intensity depending on
the epicentral distance and/or the lapse-time. In general, absorption
anomalies have a stronger and longer-lasting effect on the intensity
received in the coda than scattering anomalies.

Although the primary focus of this work is the mapping of spatial
variations of attenuation properties, the proposed theory may also
find applications to the mapping of temporal variations based on
the measurement of delay times in the coda. In particular, when
the diffusion approximation does not apply and the energy flux is
strongly anisotropic, the sensitivity kernels originally proposed to
map the relative velocity changes in an evolving medium should be
amended (Pacheco & Snieder 2005; Obermann et al. 2013). These
kernels only depend on the angularly averaged intensity usually cal-
culated in the diffusion approximation. When this approximation is
invalid, it is tempting to simply substitute the diffusion solution
with the intensity derived from the more accurate radiative transfer
equation. However, such a substitution would violate the normal-
ization condition derived by Pacheco & Snieder (2005) (eq. 16).
Because the specific intensity can be interpreted as a probability
density defined in phase space (x, k̂), we can straightforwardly ex-
tend the probabilistic reasoning of Pacheco & Snieder (2005) and
derive a sensitivity kernel for delay times in the coda in terms of the
specific intensity. We find that the apparent velocity perturbation in
the coda (δv/v)a due to a perturbation of the velocity field δv/v in
an evolving medium is given by(

δv

v

)
a

(r; r0; t) = Sd

∫
Rd

∫
Sd

∫ t

0

δv

v
(r′)

× I (r′, −n̂′; r; t − t ′)I (r′, n̂′; r0; t ′)
I (r; r0; t)

dn̂′ dr ′ dt ′

(36)

Formula (36) is valid in the case of an anisotropic distribution of
energy fluxes and reduces to previously published formulae when
the isotropy condition applies. It is apparent that the velocity pertur-
bation kernel is identical to the absorption kernel (11). Both verify
the generalized normalization condition (15), which involves an
integral over phase space.

Our preliminary calculations of the impact of local attenuation
perturbations on the intensity received in the coda suggest that
it should be possible to map lateral variations of scattering and
absorption in the crust with the aid of sensitivity kernels. Existing
Q mapping methods such as those developed by Nishigami (1991) or
Xie & Mitchell (1990) make rather strong simplifying assumptions
on the sensitivity of coda waves. By taking into account the finer
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spatiotemporal details of the kernels derived in this paper, there
is hope to improve on the resolution of existing methods and to
distinguish between absorption and scattering effects. Our future
efforts will concentrate on the development of a tool to map the
spatial variations of scattering and absorption in the lithosphere
from the intensity of coda waves. In this respect, the variety of
inverse methods developed in optical tomography, and summarized
in the papers by Arridge & Schotland (2009), can certainly benefit
to our work. The problem of inverse transport has also received a
lot of attention in the mathematical literature (Bal 2009), and the
general principles established in these studies can likewise guide us
in our research.

Nevertheless, a number of steps must be taken before we reach
our goal. First of all, the limits of validity of the perturbation the-
ory adopted in our work should be established. This question can
be addressed with the aid of Monte Carlo simulations to solve the
radiative transfer equation in laterally varying scattering and absorb-
ing media. Because the coda displays large statistical fluctuations,
another important issue is to develop specific sensitivity kernels
for robust observables such as the peak delay time and the coda
quality factor. Our approach should ultimately allow us to derive
attenuation maps of the crust from the observed regional variations
of these two parameters (see, e.g. Carcolé & Sato 2010; Calvet
et al. 2013). Other important issues should be considered in the
future. In particular, scattering anisotropy may play an important
role in the observed spatiotemporal dependence of the coda enve-
lope. Because the calculation of the full angular dependence of the
specific intensity required for our purposes is still challenging, we
have adhered to the simple isotropic scattering approximation which
hopefully captures the essential features of the sensitivity. Finally,
future works should address the possible role of depth-dependent
attenuation structures, which calls for the development of 3-D sen-
sitivity kernels.
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A P P E N D I X A : D I F F U S I O N
A P P ROX I M AT I O N

The purpose of this appendix is to provide an independent deriva-
tion of eqs (20) and (21) using a diffusion model for the propagation
of energy in the Earth. Such an approximation may be valid if the
propagation time and distances are much larger than the mean free
time and mean free path, respectively, and if the medium perturba-
tions are not located in the vicinity of the source. In seismology, this
model has widely been used to model the propagation of seismic
energy in volcanic areas (Wegler & Lühr 2001; Snieder & Hagerty
2004; Wegler 2004). Detailed derivations have been previously pub-
lished in the context of optical tomography (Arridge 1995); hence,
we shall be brief. The diffusion equation for the total intensity in a
laterally varying scattering and absorbing medium writes:

∂ I (r, t)

∂t
− ∇ · (D(r)∇ I (r, t)) − I (r, t)

ta(r)
= S(r, t). (A1)

In eq. (A1), we have introduced the diffusion constant of the waves
D, which is related to the mean free time of the waves, the mean
cosine of the scattering angle g (see eq. 22) and the wave velocity c
through the formula:

D(r) = cτ (r)2

(1 − g)d
. (A2)

Like in eq. (1), t a and S denote the absorption time and source of
intensity, respectively. The treatment that follows parallels closely
the perturbation approach for the radiative transfer equation. We
define the Green’s function of the diffusion equation G(r; r0, t) as
the solution to eq. (A1) with source term S(r, t) = δ(r − r0)δ(t).
This Green’s function may be used to solve the diffusion equation
for a general source term S(r, t). If the intensity is initially 0, the
solution is given by the convolution integral:

I (r, t) =
∫∫ t

0
G(r; r0, t − t ′)S(r0, t ′) dr0dt, (A3)
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where the spatial integral is over the full space. Following the per-
turbative approach, we assume that the diffusion constant and ab-
sorption time may be decomposed as follows:

D(r) = D0 + δD(r), (A4a)

1

t a(r)
= 1

t a
0

+ δ

(
1

t a(r)

)
, (A4b)

where the deviations from homogeneity are supposed to be suffi-
ciently small. Introducing the decomposition (A4) into eq. (A1),
transferring all perturbative terms to the right-hand side, and ap-
plying the representation theorem (A3), we obtain the following
integral equation for the Green’s function G:

G(r, r0; t) = G0(r, r0; t) −
∫∫ t

0
G0(r, r1; t − t ′)

× δ

(
1

ta(r1)

)
G(r1, r0; t ′) dr1 dt ′

+
∫∫ t

0
G0(r, r1; t − t ′)∇1 · (

δD(r1)∇1G(r1, r0; t ′)
)

× dr1 dt ′. (A5)

We now assume that the perturbations are sufficiently small so that
G may be substituted with G0 in eq. (A5). Integrating by parts the
second term on the right-hand side, the perturbation of intensity in
the diffusion approximation may be written as

δ I (r; r0, t) =
∫

δ

(
1

t a(r1)

)
K a

d (r; r1; r0, t) dr1

+
∫

δD(r1)K sc
d (r, r1; r0, t) dr1, (A6)

where the following sensitivity kernels have been introduced:

K a
d (r; r1; r0, t) =

∫ t

0
G0(r, r1; t − t ′)G0(r1, r0; t ′) dt ′, (A7)

K sc
d (r; r1; r0, t) = −

∫ t

0
∇1G0(r, r1; t − t ′) · ∇1G0(r1, r0; t ′) dt ′.

(A8)

In eqs (A7)–(A8), the subscript reminds the reader that the results
are obtained in the diffusion approximation. The agreement between
eqs (20) and (A7) is clear, once one realizes that I and G both stand
for the total intensity radiated by a unit point source of intensity. To
verify that eqs (21) and (A8) agree, we first note that in the diffusion
approximation, the current vector and the intensity are related by
Fourier’s law (e.g. Akkermans & Montambaux 2007):

∇1G0(r1; r0; t) = − c

D0
J0(r1; r0, t), (A9)

Next, under the assumption of constant wave velocity and scattering
anisotropy, we note the following relation between perturbations of
the mean free time and diffusion constant:

− c2 δD

D2
= c2δ

(
1

D

)
= d(1 − g)δ

(
1

τ

)
. (A10)

Injecting eq. (A9) into eq. (A8) and taking into account the relation
(A10), the asymptotic relation (21) is recovered.

A P P E N D I X B : C A L C U L AT I O N O F
A N G U L A R I N T E G R A L S

In this section, we provide analytical formulae for the angular inte-
grals which appear in eq. (31). We wish to evaluate:

I = 1

2π

∫
2π

dŝ

(t̄ − S R ˆSR · ŝ)(ū − R̂0 · ŝ)
. (B1)

Introducing the new variable v̄ = t̄/S R, eq. (B1) can be rewritten
as

I = 1

2π ¯S R

×
∫ 2π

0

dθ

(v̄− cos θ1 cos θ− sin θ1 sin θ )(ū− cos θ0 cos θ− sin θ0 sin θ )
,

(B2)

where ŝ = (cos θ, sin θ ), R̂0 = (cos θ0, sin θ0) and ˆSR =
(cos θ1, sin θ1) in a Cartesian system of coordinate such as
the one shown in Fig. 1 (note that θ1 = 0 in this case). Introducing
the complex numbers z = eiθ , z1 = eiθ1 and z0 = eiθ0 , we rewrite
eq. (B1) as a contour integral in the complex plane over the unit
circle:

I = 1

i2π S Rz

×
∮

|z|=1

dz

(v̄−(z1+1/z1)(z+1/z)/4+(z1−1/z1)(z−1/z)/4)(ū− · · ·) ,
(B3)

where the dots indicate that one obtains the terms inside the second
parenthesis from the first by substitution (z1 → z0). In eq. (B2), the
integrand has four poles in the complex plane:

r0
+
− = (ū ±

√
ū2 − 1)z0, (B4)

r1
+
− = (v̄ ±

√
v̄2 − 1)z1. (B5)

One easily checks that only r0
− and r1

− lie inside the contour.
Application of the residue theorem then yields:

I = 4z1z0

S R(r1
− − r0

−)

(
r1

−

(r1
− − r1

+)(r1
− − r0

+)

− r0
−

(r0
− − r1

+)(r0
− − r0

+)

)
. (B6)

In the case where the two poles coalesce, the limit is given by

I = 4z1
2(r1

− + r1
+)

(r1
+ − r1

−)3
. (B7)
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The purpose of this note is to briefly review the report by J. Mayor, L. Margerin and M. 

Calvet on the PhD-work supported by SIGMA and dedicated to the evaluation of the seismic 

attenuation spatial variations in France from the observation and modeling of the seismic 

coda of local and near earthquakes. 

Studying the absorption and scattering quality factors and evaluating their regional 

variations is important in the understanding of the degradation of shear wave elastic field 

from the seismic source to the surrounding crustal structures. As such, it provides 

information to better assess earthquake source characteristics and to model ground motion 

from the elastodynamic equation. This is a very interesting project and the presented results 

are promising.   

METHODOLOGIES 

The work is based on classical theories of coda waves, including the most recent works. Its 

promoters and their research group are leading specialist in this field of investigation.  In a 

large sense, there is no doubt about the high quality of the work even if some questions stay 

open and some part of the work should be better explained. 

(1) As it is explained (see also Figure 2) in the text, QC depends more on scattering-Q and 

anisotropy for short lapse time and intrinsic-Q dominates for long lapse time due to the 

fact that the coda evolves with time from a single scattering to a multiple scattering and 

finally a diffusive regime. Clearly, the choice of the studied part of the coda suggests that 

this work intends to evaluate intrinsic-Q. 

Q1: In figure 12, the long lapse time plateau in the 4-8 Hz frequency band for the 

considered dataset is identified when LW(s) is greater than 70 s and a coda onset of 50 s. 

The way to estimate the plateau Q-value is considered as independent of the frequency 

in the text.  For the reader to assess the validity of this assumption, it would be 

interesting to know if the observation is similar in the three other considered frequency 

ranges.  

Q2: The explanations given from figure 13 to evaluate the maximal epicentral giving the 

best compromise to measure QC with these defined LW(s) and tW are not very clear from 

the document. How can we see that 180 km is this critical distance with a plot reporting 

the distances only up to 200 km? Is there any statistical analysis supporting this 

conclusion? What about the distances of less than 50 – 60 km? 

(2) The wave field generated by a seismic source results from the convolution of different 

effects, including source, path and site contributions. The seismic coda includes 

contribution from these different effects, but the study only considered the path 
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properties without explaining how the possible influence of the other contributions can 

affect the QC evaluation. 

Q1: Concerning the source contribution, it is important to have in mind that few 

earthquakes in the dataset [see my comment on the data presentation] have a corner 

frequency between 1 and 2 Hz, and even 2 and 4 Hz. How did you test if the energetic 

content of the source in the studied time series is sufficiently large to evaluate QC at 

those “low” frequencies? Was the test (2) page 20 on the S/N ratio done by frequency 

range or not? 

Q2: The local geological conditions of the recording stations can have a strong influence 

on the coda signal in some frequency bands. This effect certainly contributes to the 

observed variation of ± 200 in QC in the Alps. To validate the presented regional QC 

variations, I recommend evaluating the influence of these local soil conditions, at least 

for a few stations with specific soil characteristics.   

(3) Concerning the evaluation of QC from the recordings, I noted the large uncertainties 

reported on figures 5 and 6 for some of the spectral ratios and also the fact that the Q 

power law is determined from a least square fit of the frequency dependent amplitude 

spectral ratios. 

Q1: Did you consider these largely uncertain values in the fit?      

(4)  In the mapping, you considered squares of 50 km x 50 km and supposed that the QC 

coda represents the value along the direct ray path between the source and the station. 

The validity of the approach is confirmed by the very interesting sensitivity study done in 

paragraph 4. 

Q1: It is difficult from the document to evaluate the variability of Q, because there is no 

discussion on the way uncertainties can be evaluated for the different pixels. It would be 

interesting to present some examples from the Q distribution in different pixels. 

Q2: Do you think that retaining the pixels with only 4 ray paths (page 22) is sufficient to 

obtain a confident QC value, and with what uncertainty? Enlarging the dimension of the 

pixels could probably enhance the quality of the evaluation. What is the criteria adopted 

to choose the 50 km x 50 km dimension?  

PRESENTATION OF THE DATA 

There is a lack of information about the dataset. The document should at least include 

diagrams reporting the range of magnitudes and focal depths of the studied earthquakes 

and the number of recordings by range of epicentral distance in each range of magnitude [3-

4, 4-5 and >5]. 
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Additional comments: 

- Figure 12: discrepancy between the text in the legend and in the figure: tw=30 s and 50 

s? 

- Figure 13: Lw should also be indicated in the figure. 

 

 

 



	  

	  

Review	  of	  the	  SIGMA	  Deliverable	  D2.113	  	  
	  
"Spatial	  variations	  of	  seismic	  attenuation	  in	  metropolitan	  France	  from	  observation	  and	  

modeling	  of	  the	  seismic	  coda"	  
	  

(Authors	  :	  J.	  Mayor,	  L.	  Margerin	  &	  M.	  Calvet,	  06/05/2014)	  
	  

	  
I	  apologize	  for	  the	  extreme	  delay	  in	  sending	  this	  review.	  
	  
As	  indicated	  in	  the	  title,	  the	  time	  decay	  of	  coda	  waves	  is	  used	  to	  provide	  quantitative	  characteristics	  
of	   crustal	   attenuation	   in	   different	   frequency	   bands,	   and	   analyze	   their	   spatial	   variations	   at	   the	  
smallest	   possible	   scale.	   There	   is	   a	   focus	   on	   SouthEastern	   France,	   but	   the	   used	   data	   set	   allows	   to	  
extend	  the	  results	  to	  a	  broader	  area,	  from	  Pyrénées	  and	  Massif	  Central	  to	  the	  West,	  Rhine	  graben	  to	  
the	  North,	  Po	  Plain	  and	  even	  Eastern	  Alps	  to	  the	  East,	  and	  northern	  Appennines	  to	  the	  South-‐East.	  
	  
The	  report	  starts	  with	  a	  discussion	  of	  the	  two	  main	  origins	  of	  attenuation	  of	  seismic	  wave	  amplitude	  
(intrinsic	  and	  scattering,	  quantified	  through	  quality	  factors	  Qi	  and	  Qsc)	  and	  their	  respective	  influence	  
of	   the	   early	   and	   late	   coda.	   The	   second	   section	   presents	   three	   various	   techniques	   proposed	   in	   the	  
literature	   to	   derive	   a	   frequency-‐dependent	   quality	   factor	   "Qcoda"	   (i.e.	   a	  mixture	   of	  Qi	   and	  Qsc)	   and	  
selects	  one	  of	   them	  on	   the	  basis	  of	   a	   comparison	   test	  on	  4	   alpine	   seismograms.	   The	   third	   section	  
then	   applies	   the	   selected	   one	   on	   a	   data	   set	   allowing	   to	   analyze	   the	   spatial	   variations	   of	   Qc	   in	   SE	  
France	   and	   surroundings,	   which	   are	   found	   to	   be	   significant	   at	   a	   typical	   scale	   of	   100	   km;	   it	   also	  
includes	  a	  short	  review	  of	  previous	  studies,	  and	  a	  parameter	  study	  to	  justify	  the	  choice	  of	  the	  optimal	  
coda	  windows.	  Finally,	  the	  last	  section	  sets	  the	  theoretical	  background	  (radiative	  transfer	  equation)	  	  
in	  2	  dimensions	  to	  derive	  the	  spatial	  variations	  of	  Qi	  and	  Qsc	  from	  those	  of	  Qcoda	  through	  the	  use	  of	  
(2D)	  "sensitivity	  kernels"	  for	  absorption	  and	  scattering,	  respectively;	  this	  however	  requires	  a	  spatio-‐
temporal	  analysis	  of	  the	  energy	  in	  the	  coda,	  which	  is	  yet	  to	  be	  done.	  The	  conclusion	  summarizes	  the	  
main	  findings	  and	  presents	  the	  next	  work,	  including	  the	  improvement	  /	  increase	  of	  the	  data	  set	  (new	  
stations,	  broader	  frequency	  range	  towards	  higher	  frequencies)	  and	  investigations	  on	  the	  lapse	  time	  
dependency	  of	  Qcoda,	  and	  new	  theoretical	  developments	   to	   recover	  Qi	  and	  Qsc	   from	  the	   lapse	   time	  
dependence	  of	  Qcoda,	  with	  due	  accounting	  of	  possible	  perturbations	  such	  as	  scattering	  anisotropy.	  
The	  main	  report	   is	  complemented	  by	  three	  appendixes,	  with	  two	  conference	  presentations	  (poster	  
and	  abstract),	  and	  a	  recently	  published	  paper	  detailing	  the	  theoretical	  developments	  of	  section	  4.	  	  
	  
All	   this	   corresponds	   to	   a	   very	   good	   and	   careful	  work,	  with	   very	   solid	   theoretical	   background.	   The	  
report	  is	  clearly	  written	  and	  easy	  to	  follow.	  I	  have	  no	  basic	  criticism	  –	  especially	  as	  I	  personally	  know	  
much	  less	  about	  coda	  waves	  and	  background	  theory	  than	  the	  authors	  !	  
I	  only	  have	  a	  few	  questions	  about	  the	  data	  and	  the	  end	  use	  of	  such	  investigations:	  
	  
Data	  set	  
The	  waveforms	  used	  for	  this	  report	  (p.19-‐20)	  are	  a	  mixture	  of	  short	  period	  recordings	  (RENASS	  and	  
SISMALP),	   accelerometric	   recordings	   (RAP)	   and	   ORFEUS	   broadband	   recordings	   from	   Belgium,	  
Germany,	  Switzerland,	  Austria,	  Slovenia	  and	  Italy	  (+	  very	  few	  from	  France),	  with	  epicentral	  distance	  
less	   than	   200	   km.	   The	   corresponding	   total	   set	   of	   88000	   waveforms	   was	   decreased	   to	   41000	  
waveforms	  with	  criteria	  based	  predominantly	  on	  record	  and	  coda	  durations.	  
It	   would	   be	   interesting	   to	   be	   shown	   the	   dispatching	   of	   these	   selected	   waveforms	   amongst	   the	  
various	  kinds	  of	  networks.	  In	  particular,	  how	  many	  accelerometric	  recordings	  could	  be	  used,	  and	  did	  
this	  proportion	  increase	  when	  the	  RAP	  network	  was	  progressively	  shifted	  from	  trigger	  to	  continuous	  
recording.	  Are	  there	  some	  recommendations	  for	  RESIF	  to	  optimize	  the	  use	  of	  coda	  information	  ?	  
	  
Frequency	  dependence	  of	  Qcoda	  



	  

	  

The	   technique	   selected	   to	   derive	   Qcoda	   in	   various	   frequency	   bands	   does	   not	   rely	   on	   any	   a	   priori	  
assumption	  on	  the	  frequency	  dependence	  of	  Q.	  Do	  the	  available	  results	  (4	  frequency	  bands)	  support	  
the	   "classical"	   power	   law	   type	   Q(f)	   =	   Q0	   fα,	   and	   could	   the	   planned	   investigations	   on	   broader	  
frequency	  ranges	  regionalize	  Q0	  and	  α	  :	  apparently,	  from	  Figure	  14	  p.23,	  northern	  French	  Alps	  have	  
low	  Q	  at	  1-‐2	  Hz,	  and	  high	  Q	  at	  8-‐16	  Hz	  (comparatively	  to	  surrounding	  areas),	  which	  suggest	  a	  larger	  α	  
:	  is	  it	  true	  or	  just	  a	  matter	  of	  color	  code	  ?	  Do	  the	  authors	  expect	  similar	  frequency	  dependence	  for	  Qi	  
and	  Qsc	  ?	  
	  
End	  use	  of	  these	  results	  	  
It	   is	   mentioned	   in	   the	   executive	   summary	   that	   these	   results	   will	   be	   helpful	   for	   ground	   motion	  
prediction,	  from	  delimitation	  of	  source	  zones	  to	  GMPEs	  and	  stochastic	  models.	  
How	  could	  the	  spatial	  variations	  of	  Qcoda	  (and	  later	  Qi	  and	  Qsc)	  be	  introduced	  in	  GMPEs,	  especially	  as	  
most	  of	  the	  GMPEs	  presently	  considered	  in	  PSHA	  studies	  fro	  SE	  France	  are	  not	  based	  on	  local	  data	  ?	  
Their	  use	  in	  stochastic	  models	  seem	  more	  straightforward,	  at	  least	  within	  relatively	  short	  epicentral	  
distances,	  but	  requires	  to	  specifically	  tune	  the	  stochastic	  models	  at	  a	  "subregional"	  scale	  	  of	  50-‐100.	  	  
Would	   this	   be	   easy	   to	   implement	   in	   present	   PSHA	   codes	   ?	   And	   what	   would	   be	   the	   strategy	   for	  
intermediate	  distances	   (50	  –	  200	  km)	  –	  which	  however	  are	  not	   so	   important	   for	   strong	   shaking	   in	  
metropolitan	  France	  -‐	  ?	  Last,	  could	  these	  Qcoda	  estimates	  significantly	  affect	  the	  estimates	  of	  moment	  
magnitude	  and	  stress	  drops,	  to	  be	  also	  included	  in	  stochastic	  models	  ?	  
	  
	  
Miscellaneous	  
Equation	  (12)	  p.	  14	  :	  could	  there	  be	  an	  error	  with	  mixing	  of	  indexes	  "i	  +	  1"	  for	  τ	  and	  "i	  +	  Nr"	  for	  <A>	  ?	  
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